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Abstract Description of molecular stereostructure is critical for the
machine learning prediction of asymmetric catalysis. Herein we report
a spherical projection descriptor of molecular stereostructure (SPMS),
which allows precise representation of the molecular van der Waals
(vdW) surface. The key features of SPMS descriptor are presented using
the examples of chiral phosphoric acid, and the machine learning appli-
cation is demonstrated in Denmark’s dataset of asymmetric thiol addi-
tion to N-acylimines. In addition, SPMS descriptor also offers a color-
coded diagram that provides straightforward chemical interpretation of
the steric environment.

Key words molecular descriptor, stereostructure, steric environment,
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Stereostructure is one of the most fundamental molecu-
lar properties, which plays a pivotal role in many areas in-
cluding asymmetric catalysis!, drug-target interaction?, and
material design.? The description of molecular stereostruc-
ture has been a long-term topic in physical organic chemis-
try, and the classic strategy is to use the key geometric pa-
rameters (i.e., distance, angle, and dihedral angle).# These
stereostructure descriptors are readily available from the
molecular 3D coordinates and allows straightforward
chemical interpretation. A large number of related descrip-
tors were applied in daily practice of organic chemist, such
as Tolman angle,’ bite angle,® and Sterimol parameters.” In
addition, continuous chirality measure® (CCM) and derived
electronic chirality measure® (ECM) descriptors were devel-
oped to parameterize the chirality of molecule, which have
been successfully applied in a wide array of quantitative
structure-activity relationship (QSAR) studies in asymmet-
ric catalysis.!°

In addition to the key geometric parameters that can be
directly applied for machine learning purposes,!! various
approaches were developed to create descriptor vectors us-
ing molecular 3D coordinates.!? These descriptor vectors
are suited for machine learning applications, including the
widely used smooth overlap of atomic positions'> (SOAP,
Figure 1a) and atom-centered symmetry functions'# (ACSF,
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Figure 1 Selected examples of molecular stereostructure descriptors
and our approach of stereostructure representation based on spherical
projection
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Figure 1b). However, many of these widely used features in
molecular machine learning were not developed for asym-
metric catalysis, which would give identical vector (such as
SOAP and ACSF) for enantiomeric molecules. This could
bring limitations to the training of machine learning mod-
els for chiral induction knowledge if the only differentiable
label is a one-hot feature (R or S).

Capturing the information of molecular stereostructure
has a rich research history in the 3D-QSAR study of asym-
metric catalysis, and the last two decades have witnessed
fruitful results of descriptor development.!® For molecules
with the same scaffold, alignment-dependent comparative
molecular field analysis (COMFA) approach'® has been
proved as a powerful strategy. By aligning the molecules
based on the core structure, the stereostructure informa-
tion can be retrieved by placing the target molecules into
common grids (Figure 1c). Probing at each grid would result
in a grid-based description of stereostructure information.
These probes, including Lennard-Jones potential,!” Cou-
lombic interaction,'® average steric occupancy (ASO),'® and
atomic electronic indicator fields (AEIF),2° provided multidi-
mensional information for the CoMFA approach and sup-
ported its remarkable success in the 3D-QSAR study of
asymmetric catalysis.?! One of the landmark applications is
the recent breakthrough of machine learning prediction in
the asymmetric thiol addition to N-acylimines by Denmark
and co-workers,'? in which the BINOL-derived chiral phos-
phoric acids are encoded using ASO descriptors. To circum-
vent the requirement of structural alignment, grid-inde-

standardizing the
molecular orientation

H

N
Q‘-'ICOOH

[[5.704, 5.704, 5.704, ..., 5.704, 5.704, 5.704],
[ 5.705, 5.705, 5.705, ..., 5.705, 5.705, 5.705),
[ 5.706, 5.706, 5.706, ..., 5.706, 5.706, 5.706],
[ 5.708, 5.708, 5.708, ..., 5.708, 5.708, 5.708],

[4.887, 4.882, 4.877, ..., 4.901, 4.896, 4.891],
[4.864, 4.861, 4.858, ..., 4.874, 4.870, 4.867],
[4.846, 4.844, 4.843, ..., 4.851, 4.849, 4.848],
[4.832, 4.832, 4.832, ..., 4.832, 4.832, 4.832]]

pendent descriptors?? (GRIND) have also been developed
and successful applied in the modelling of asymmetric ca-
talysis.?

Inspired by the success of spherical projection in object
recognition,?* we surmised that the same strategy can be
applied in the description of molecular van der Waals
(vdW) surfaces, which is critical for the enantiomeric dis-
crimination in asymmetric catalysis. Herein we report a
spherical projection descriptor of molecular stereostruc-
ture (SPMS). This approach creates a readily available ma-
trix descriptor that can capture the stereostructure infor-
mation, whose ability in molecular machine learning was
demonstrated in Denmark’s dataset of asymmetric thiol ad-
dition to N-acylimines. In addition, SPMS also offers a color-
coded diagram that enables straightforward chemical inter-
pretation.

The generation procedure of SPMS descriptor is demon-
strated using L-proline as an example (Figure 2). The L-pro-
line molecule is first placed in a sphere with customized
center and radius. In this case, the chiral carbon is selected
as the sphere center. Subsequent rotation standardizes the
orientation of molecule, which makes the generated SPMS
descriptor invariant of rotation and translation (Figure S1).
This orientation standardization allows SPMS descriptor to
differentiate the enantiomeric compounds. The distance
between the molecular vdW surface and the sphere is next
projected to the sphere surface in a color-coded fashion.
Red region indicates that this part of molecular surface is
proximal to the sphere and sterically demanding from the
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Figure 2 Generation procedure of SPMS descriptor using L-proline as demonstration
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sphere perspective. Equirectangular projection of the
sphere surface creates the desired SPMS descriptor, which is
a color-coded diagram and also a readable matrix for ma-
chine learning models. The details of the generation proce-
dure are included in the Supporting Information. We also
provided a website? for users to create the SPMS descriptor
with uploaded coordinate of target molecule.

The resolution of SPMS descriptor is customizable, and
the recommended resolution that balances accuracy and
generation efficiency is 40 x 80. Figure 3 compares four res-
olutions of SPMS descriptors of L-proline. The difference be-
tween 10 x 20 and 80 x 160 resolutions is significant
(Diff(a, d), Figure 3), with a mean absolute deviation of 0.27
A. This suggests that the 10 x 20 resolution is insufficient to
capture the stereostructure information (Figure 3a). Similar
situation exists when comparing the 20 x 40 and 80 x 160
resolutions (Diff(b, d), Figure 3). When the resolution in-
creases to 40 x 80, the difference is limited, with only 0.04 A
mean absolute deviation (Diff(c, d), Figure 3). Therefore, the
40 x 80 resolution allows the desired description of L-pro-
line stereostructure in a sub-angstrom accuracy. SPMS de-
scriptor in the 40 x 80 resolution can be generated within
milliseconds for general chiral catalysts in asymmetric syn-
thesis.

The SPMS descriptor can accurately capture and repre-
sent the information of molecular vdW surface. Figure 4 in-
cludes three scenarios that are typically encountered in
asymmetric catalysis, using chiral phosphoric acid catalysts
as demonstration. Figure 4a compares the SPMS diagrams
of the spiro phosphoric acid 1 and the BINOL-derived phos-
phoric acid 2. The change of chiral scaffold is clearly differ-
entiated in the highlighted region. The vdW surface of
BINAP scaffold is closer to the sphere surface as compared
to the spiro scaffold, thus creating a redder region in the
highlighted area. Comparing the BINOL-derived phosphoric
acids 3 and 4, Figure 4b presents the capability of SPMS de-
scriptor in representing the substituent effect. The shape
and steric bulkiness of the two t-Bu substituents are pre-
cisely captured in the highlighted regions. Figure 4c com-
pares the SPMS descriptors of the enantiomeric phosphoric
acids, (R)-5 and (S)-5, which is the key application purpose
that SPMS is designed for. The two enantiomers have exact-
ly the opposite pattern in the SPMS diagrams, which reflect
the enantiomeric nature. The diagrams of (R)-5 and (S)-5
are not mirror images because of the spherical coordinate
in the equirectangular projection. This does not affect the
application of SPMS descriptors in machine learning, but
the spherical coordinate can be adjusted based on the user’s
desire. In addition, the change of stereostructure between
the two enantiomers can be described by the difference im-
age of the two corresponding SPMS descriptors, as demon-
strated in Figure 4c. This creates a new set of SPMS descrip-
tors, Diff(R, S), which describe how the vdW surfaces
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Figure 3 Comparisons of SPMS descriptors of L-proline in different res-
olutions

change between the two enantiomers from a standardized
sphere perspective. This difference matrix is closely related
to the nature of chiral induction, which would be helpful in
the future machine learning trainings of asymmetric catal-
ysis.

We next demonstrated the applications of SPMS de-
scriptor in the machine learning of asymmetric catalysis.
We used the dataset of asymmetric thiol addition to N-
acylimines from the study of Denmark and co-workers.!%?
The dataset includes 1075 experimental enantioselectivi-
ties from the combinations of five N-acyl imines, five thiols,
and 43 chiral phosphoric acid (CPA) catalysts (Figure 5a).
For each reactant or catalyst, 20 favorable conformations
were identified using MMFF94 force field.26 The SPMS de-
scriptors of the 20 conformations were generated and aver-
aged into the final SPMS descriptor of the target molecule.
Consideration of conformational flexibility would yield a
more descriptive representation of stereostructure as com-
pared to a static single conformer, as demonstrated in pre-
vious applications of COMFA descriptors in asymmetric ca-
talysis.19¢1927 For each asymmetric transformation, the
SPMS descriptors of imine, thiol, and CPA were concatenat-
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Figure4 Key features of SPMS descriptors in representing the molecular stereostructure, using chiral phosphoric acids as demonstration: (a) change of

chiral scaffold; (b) change of substituent; (c) enantiomeric compounds.

ed to a three-channel matrix input, which was subjected to
a convolution neural network?? for the enantioselectivity
training (AAG in kcal/mol).

These 1075 reactions were randomly partitioned into
600 data for model training and 475 data for validation. To
ensure that the dataset partitioning was unbiased, this pro-
cess was repeated ten times. The averaged mean absolute
error of ten trials is 0.1624 kcal/mol, and the R? of trial 1 is
0.8904 (Figure 5¢). The performance of our model is slightly
inferior as compared to Denmark’s results!®® (averaged MAE
of ten trials: 0.1516 kcal/mol), which may be due to the lack
of electronic descriptors in our training and the fact that
SPMS mainly describes the vdW surface while the descrip-
tion of the internal structural of CPA catalyst is insufficient.
The details of model training are provided in the Support-
ing Information.

In addition to the machine learning application, the
SPMS diagram essentially captures the vdW surface in a
fashion that follows the general consensus of organic chem-
ists, which allows straightforward chemical interpretation
of the stereostructure. Figure 5d shows the structure of
Ru'-(R)-BINAP,%° whose chiral induction is usually inter-
preted using the classic four-quadrant diagram. The corre-
sponding SPMS diagram of Ru'-(R)-BINAP captures the
change of steric environment in the four quadrants, in
which the red regions are in the second and forth quadrants
as expected. Quantified comparison between the four

quadrants is also allowed through integration in each quad-
rant (Figure S4). Therefore, the SPMS descriptors can also be
used as a tool in the understanding of stereostructure for
daily practice of experimental chemist as well as chemical
education.

In summary, a molecular stereostructure descriptor is
developed based on spherical projection strategy (SPMS).
By projecting the distance between the vdW surface and
the customized sphere, SPMS descriptors accurately cap-
tures the stereostructure information of vdW surface in a
matrix or a color-coded diagram. The key features of SPMS
descriptors in the application of asymmetric catalysis are
elaborated using chiral phosphoric acids as examples,
which presents the capability of SPMS in the differentiation
between the chiral scaffolds, substituents, as well as enan-
tiomers. The machine learning application of SPMS descrip-
tors was demonstrated on the dataset of CPA-catalyzed
asymmetric thiol addition to N-acylimines, which provides
a satisfying regression model of the experimental enanti-
oselectivities. In addition to its application in machine
learning, the SPMS diagram also follows the general con-
sensus of organic chemists, which allows straightforward
chemical interpretation of steric environment. We envision
that SPMS descriptors can serve as a complementary mo-
lecular feature to the CoMFA-based descriptors, together
supporting the advancement of machine learning predic-
tions of asymmetric catalysis.
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Figure 5 Application of SPMS descriptor in machine learning of CPA-
catalyzed asymmetric thiol addition to N-acylimines (a to c) and chemi-
cal interpretation of steric environment (d).
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