Synthesis 2021; 53(13): 2192-2200
DOI: 10.1055/s-0040-1706026
feature

Rhodium(III)-Catalyzed Enantioselective Benzamidation of Cyclopropenes

Saad Shaaban
a   Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, 44227 Dortmund, Germany
,
Houhua Li
a   Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, 44227 Dortmund, Germany
,
Christian Merten
b   Organic Chemistry II, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
,
a   Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, 44227 Dortmund, Germany
c   Department of Chemical Biology, Technical University Dortmund, Otto-Hahn Straße 4a, 44227 Dortmund, Germany
d   Department of Chemistry and Forensics, College of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
,
a   Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, 44227 Dortmund, Germany
c   Department of Chemical Biology, Technical University Dortmund, Otto-Hahn Straße 4a, 44227 Dortmund, Germany
› Author Affiliations
This work was supported by the Max-Planck-Gesellschaft. S.S. thanks the Alexander von Humboldt Foundation for funding. H.L. is grateful to the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation, SNSF) for an Early Postdoctoral Mobility fellowship (P2GEP2_168250). This work has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the Heisenberg program (ME 4267/5-1; project no. 418661145).


Abstract

Cyclopropylamines are characteristic structural motifs found in a variety of natural products and pharmaceuticals and therefore engaging targets for the development of new methods for their synthesis. Herein the synthesis of enantioenriched cyclopropylamines through catalytic enantioselective C–H functionalization using a chiral RhJasCp complex is reported. The reaction proceeds under mild conditions with high enantiocontrol. This reaction enables access to cyclopropylamines with three contiguous stereocenters originating from the corresponding cyclopropenes.

Supporting Information



Publication History

Received: 07 December 2020

Accepted after revision: 25 January 2021

Article published online:
18 February 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected examples, see:
    • 5a Furukawa J, Kawabata N, Nishimura J. Tetrahedron Lett. 1966; 7: 3353
    • 5b Mamane V, Gress T, Krause H, Fürstner A. J. Am. Chem. Soc. 2004; 126: 8654
    • 5c Johansson MJ, Gorin DJ, Staben ST, Toste D. J. Am. Chem. Soc. 2005; 127: 18002
    • 5d Riches SL, Chandreyee Saha C, Filgueira NF, Grange E, McGarrigle EM, Aggarwal VK. J. Am. Chem. Soc. 2010; 132: 7626
    • 5e Terrasson V, van der Lee A, de Figueiredo RM, Campagne JM. Chem. Eur. J. 2010; 16: 7875
    • 5f Lindsay VN. G, Fiset D, Gritsch PJ, Azzi S, Charette AB. J. Am. Chem. Soc. 2013; 135: 1463
    • 5g Sabbatani J, Huang X, Veiros LF, Maulide N. Chem. Eur. J. 2014; 20: 10636
    • 5h Lauterbach T, Ganschow M, Hussong MW, Rudolph M, Rominger F, Hashmi AS. K. Adv. Synth. Catal. 2014; 356: 680
    • 5i Klimczyk S, Misale A, Huang X, Maulide N. Angew. Chem. Int. Ed. 2015; 54: 10365
    • 5j del Hoyo AM, Suero MG. Eur. J. Org. Chem. 2017; 2122
    • 5k Ernouf G, Brayer J.-L, Folléas F, Demoute J.-P, Meyer C, Cossy J. J. Org. Chem. 2017; 82: 3965
    • 5l Peil S, Guthertz A, Biberger T, Fürstner A. Angew. Chem. Int. Ed. 2019; 58: 8851
    • 5m Phipps EJ. T, Rovis T. J. Am. Chem. Soc. 2019; 141: 6807
    • 5n Xu B, Troian-Gautier L, Dykstra R, Martin RT, Gutierrez O, Tambar UK. J. Am. Chem. Soc. 2020; 142: 6206
  • 6 Khan MN. A, Suzuki T, Miyata N. Med. Res. Rev. 2013; 33: 873
    • 7a Miller JA, Hennessy EJ, Marshall WJ, Scialdone MA, Nguyen ST. J. Org. Chem. 2003; 68: 7884
    • 7b Armstrong A, Scutt JN. Chem. Commun. 2004; 510
    • 7c Yoshida K, Yamaguchi K, Mizuno A, Unno Y, Asai A, Sone T, Yokosawa H, Matsuda A, Arisawa M, Shuto S. Org. Biomol. Chem. 2009; 7: 1868
    • 8a Gu P, Su Y, Wu X.-P, Sun J, Liu W, Xue P, Li R. Org. Lett. 2012; 14, 2246
    • 8b Sambasivan R, Ball ZT. Angew. Chem. Int. Ed. 2012; 51: 8568
    • 8c Chanthamath S, Nguyen DT, Shibatomi K, Iwasa S. Org. Lett. 2013; 15: 772
    • 8d Huang K.-X, Xie M.-S, Zhao G.-F, Qu G.-R, Guo H.-M. Adv. Synth. Catal. 2016; 358: 3627
    • 8e Brandenberg OF, Prier CK, Chen K, Knight AM, Wu Z, Arnold FH. ACS Catal. 2018; 8: 2629
    • 8f Shao X, Malcolmson SJ. Org. Lett. 2019; 21: 7380
    • 9a Pedroni J, Cramer N. Angew. Chem. Int. Ed. 2015; 54: 11826
    • 9b Pedroni J, Saget T, Donets PA, Cramer N. Chem. Sci. 2015; 6: 5164
    • 9c Mayer C, Ladd CL, Charette AB. Org. Lett. 2019; 21: 2639

      For selected reviews on the reactivity of cyclopropenes, see:
    • 10a Rubin M, Rubina M, Gevorgyan V. Synthesis 2006; 8: 1221
    • 10b Zhu ZB, Wei Y, Shi M. Chem. Soc. Rev. 2011; 40: 5534
    • 10c Li P, Zhang X, Shi M. Chem. Commun. 2020; 56: 5457
    • 10d Raiguru BP, Nayak S, Mishra DR, Das T, Mohapatra S, Mishra NP. Asian J. Org. Chem. 2020; 9: 1088
    • 10e Vicente R. Chem. Rev. 2020; in press; DOI: 10.1021/acs.chemrev.0c00151.
    • 11a Parra A, Amenls L, Guisan-Ceinos M, Lopez A, Ruano JL. G, Tortosa M. J. Am. Chem. Soc. 2014; 136: 15833
    • 11b Teng H.-L, Luo Y, Wang B, Zhang L, Nishiura M, Hou Z. Angew. Chem. Int. Ed. 2016; 55: 15406
    • 11c Teng H.-L, Luo Y, Nishiura M, Hou Z. J. Am. Chem. Soc. 2017; 139: 16506
    • 11d Li Z, Zhao J, Sun B, Zhou T, Liu M, Liu S, Zhang M, Zhang Q. J. Am. Chem. Soc. 2017; 139: 11702
    • 11e Simaan M, Marek I. Angew. Chem. Int. Ed. 2018; 57: 1543
    • 11f Li Z, Zhang M, Zhang Y, Liu S, Zhao J, Zhang Q. Org. Lett. 2019; 21: 5432
    • 11g Feng S, Hao H, Liu P, Buchwald SL. ACS Catal. 2020; 10: 282
    • 11h Zhang Y, Li Y, Zhou W, Zhang M, Zhang Q, Jia R, Zhao J. Chem. Commun. 2020; 56: 12250

      For recent reviews on chiral cyclopentadiene–metal complexes, see:
    • 12a Shaaban S, Davies C, Waldmann H. Eur. J. Org. Chem. 2020; 6512
    • 12b Mas-Rosello J, Herraiz AG, Audic B, Laverny A, Cramer N. Angew. Chem. Int. Ed. 2020; 59 in press; DOI: 10.1002/anie.202008166.

      For the synthesized chiral cyclopentadiene ligands, see:
    • 13a Gutnov A, Heller B, Fischer C, Drexler H.-J, Spannenberg A, Sundermann B, Sundermann C. Angew. Chem. Int. Ed. 2004; 43: 3795
    • 13b Hyster TK, Knörr L, Ward TR, Rovis T. Science 2012; 338: 500
    • 13c Ye B, Cramer N. Science 2012; 338: 504
    • 13d Ye B, Cramer N. J. Am. Chem. Soc. 2013; 135: 636
    • 13e Zheng J, Cui W.-J, Zheng C, You S.-L. J. Am. Chem. Soc. 2016; 138: 5242
    • 13f Jia Z.-J, Merten C, Gontla R, Daniliuc CG, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2017; 56: 2429
    • 13g Trifonova EA, Ankudinov NM, Mikhaylov AA, Chusov DA, Nelyubina YV, Perekalin DS. Angew. Chem. Int. Ed. 2018; 57: 7714
    • 13h Wang S.-G, Park SH, Cramer N. Angew. Chem. Int. Ed. 2018; 57: 5459
    • 13i Liang H, Vasamsetty L, Li T, Jiang J, Pang X, Wang J. Chem. Eur. J. 2020; in press; DOI: 10.1002/chem.202001814.

      For selected examples, see:
    • 14a Ye B, Cramer N. Angew. Chem. Int. Ed. 2014; 53: 7896
    • 14b Dieckmann M, Jang Y.-S, Cramer N. Angew. Chem. Int. Ed. 2015; 54: 1214
    • 14c Li T, Zhou C, Yan X, Wang J. Angew. Chem. Int. Ed. 2018; 57: 4048
    • 14d Shan G, Flegel J, Li H, Merten C, Ziegler S, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2018; 57: 14250
    • 14e Tian M, Bai D, Zheng G, Chang J, Li X. J. Am. Chem. Soc. 2019; 141: 9527
    • 14f Duchemin C, Cramer N. Chem. Sci. 2019; 10: 2773
    • 14g Li H, Gontla R, Flegel J, Merten C, Ziegler S, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2019; 58: 307
    • 14h Ozols K, Jang Y.-J, Cramer N. J. Am. Chem. Soc. 2019; 141: 5675
    • 14i Zheng G, Zhou Z, Zhu G, Zhai S, Xu H, Duan X, Yi W, Li X. Angew. Chem. Int. Ed. 2020; 59: 2890
    • 14j Cui W.-J, Wu Z.-J, Gu Q, You S.-L. J. Am. Chem. Soc. 2020; 142: 7379
    • 14k Mas-Rosello J, Smejkal T, Cramer N. Science 2020; 368: 1098
    • 14l Shaaban S, Li H, Otte F, Strohmann C, Antonchick AP, Waldmann H. Org. Lett. 2020; in press; DOI: 10.1021/acs.orglett.0c03355.
  • 15 Semakul M, Jackson KE, Paton RS, Rovis T. Chem. Sci. 2017; 8: 1015
  • 16 It is important to mention that the use of a cyclopropene with two electron-withdrawing groups with RhJasCp failed in forming the ring-opening product in a reaction reported by the group of Rovis: Hyster TK, Rovis T. Synlett 2013; 24: 1842
  • 17 Merten C, Golub TP, Kreienborg NM. J. Org. Chem. 2019; 84: 8797
    • 18a Krämer K, Leong P, Lautens M. Org. Lett. 2011; 13: 819
    • 18b Phan DH. T, Kou KG. M, Dong VM. J. Am. Chem. Soc. 2010; 132: 16354
    • 19a Halgren TA. J. Comput. Chem. 1996; 17: 490
    • 19b Spartan 14 . Wavefunction Inc; Irvine (CA, USA): 2014
    • 19c Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJ. A, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision E.01 . Gaussian, Inc; Wallingford (CT, USA): 2013