Recent Progress in Radical Decarboxylative Functionalizations Enabled by Transition-Metal (Ni, Cu, Fe, Co or Cr) Catalysis

H. Chen, Y. A Liu, X. Liao
Recent Progress in Radical Decarboxylative Functionalizations Enabled by Transition-Metal (Ni, Cu, Fe, Co or Cr) Catalysis

H. Chen
Y. A. Liu*
X. Liao*
Tsinghua University,
P. R. of China
Genomics Institute of the Novartis Research Foundation, USA

Recent Progress and Applications of Transition-Metal-Catalyzed Asymmetric Hydrogenation and Transfer Hydrogenation of Ketones and Imines through Dynamic Kinetic Resolution

R. Molina Betancourt
P.-G. Echeverria
T. Ayad
P. Phansavath*
V. Ratovelomanana-Vidal*
Chimie ParisTech-CNRS, France

© 2021. Thieme. All rights reserved.
Recent Advances in Copper-Catalyzed Radical C–H Bond Activation Using N–F Reagents

Synthesis 2021, 53, 51–64
DOI: 10.1055/s-0040-1707234
J. M. Muñoz-Molina*
T. R. Belderrain*
P. J. Pérez*
Universidad de Huelva, Spain

Recent Advances in Copper-Catalyzed Radical C–H Bond Activation Using N–F Reagents

Synthetic Approaches to Non-Tropane, Bridged, Azapolycyclic Ring Systems Containing Seven-Membered Carbocycles

Synthesis 2021, 53, 65–78
DOI: 10.1055/s-0040-1707385
A. H. Shoemaker
D. R. Griffith*
Lafayette College, USA

Synthetic Approaches to Non-Tropane, Bridged, Azapolycyclic Ring Systems Containing Seven-Membered Carbocycles

The Power of Iron Catalysis in Diazoo Chemistry

Synthesis 2021, 53, 79–94
DOI: 10.1055/s-0040-1707272
V. Carreras
N. Tanbouza
T. Ollevier*
Université Laval, Canada

© 2021. Thieme. All rights reserved.
Phosphorylation of Carboxylic Acids and Their Derivatives with P(O)–H Compounds Forming P(O)–C Bonds

Phosphorylation of carboxylic acids and their derivatives forming P(O)–C bonds

acids, esters, amides, thioesters, etc.
decarboxylation
decarbonylation
and others
P(O)-sp²C, P(O)-sp³C, P(O)-sp³C bonds

Asymmetric Synthesis of Isoxazol-5-ones and Isoxazolidin-5-ones

Short Review

Isoxazol-5-ones:
OH-form (imine-like)
NH-form (enamine-like)
OH-form (enol-like)

Nitrone approach

Functionalization

Nitroso approach

Isoxazolidin-5-ones

Reactivity towards electrophiles and nucleophiles

Metal-Free Iodoperfluoroalkylation: Photocatalysis versus Frustrated Lewis Pair Catalysis

Frustrated Lewis Pair

vs

Irradiation

© 2021. Thieme. All rights reserved.
MeONH$_2$·HCl-Mediated α-Methylenation/Conjugate Addition of α-Sulfonyl ω-Hydroxyacetophenones with Methyl Sulfoxides: Route to 3-Sulfonylchroman-4-ones

DMSO as dual role >30 examples up to 93% yield

Synthesis of Aminoalkyl-Functionalized 4-Arylquinolines from 2-(3,4-Dihydroisoquinolin-1-yl)anilines via the Friedländer Reaction

60 °C 5 min to 150 h AcOH $R = \text{H, OMe; } R_1 = \text{H, Me; } R_2 = \text{H, Me; } R_3 = \text{H, OMe, Me, Br, NO}_2; \ R_4 = \text{Alk, Ar; } R_5 = \text{H, Alk, Allyl, Bn, Ac, COOEt}$

only for unsymmetrical acyclic aliphatic ketones ($R_5 = \text{Me, i-Pr, Allyl, Bn}$)

Stereoselective 1,4-Addition of Primary Alcohols to γ-Alkoxy-α,β-unsaturated Esters

NaH CH_2Cl_2, -23 °C 17 examples up to 80% yield syn/anti up to 96:4

© 2021. Thieme. All rights reserved.
Simple Synthesis of Dimethyl Nitrobenzhydrylphosphonates and HeteroarylNitroarylacetonitriles via Vicarious Nucleophilic Substitution (VNS) Reaction

M. Mąkosza*
M. Bechicka
K. Wojciechowski
Institute of Organic Chemistry
Polish Academy of Sciences, Poland

Ar = Ph, 2-furyl, 2-thienyl
Y = PO(OMe)₂, CN
Z = H, 2-Cl, 3-Cl, 2-I
1-nitronaphthalene
5-nitroquinoline
18 examples

Diastereoselective Synthesis of Alkylated 1,4-Cyclohexadiene Esters Using Epimeric Pyrroloimidazolones

N. Tran
D. Cadwallader
C. Metallinos*
Brock University, Canada

syn

1. Na, liq. NH₃
2. LDA, THF, –78 °C
3. EtI
>95:5 dr

anti

1. Na, liq. NH₃
2. LDA, THF, –78 °C
3. EtI
95:5 dr

© 2021. Thieme. All rights reserved.