Enantioselective Minisci-Reaction of N -Heterocycles and Amides through Hydrogen-Atom Transfer

Significance: Phipps and co-workers report a photochemical hydrogen-atom transfer (HAT)-driven enantioselective Minisci reaction of N -heterocycles with amides by using one of a series of chiral phosphoric acids as the chromophore and diacetyl as the terminal oxidant. The corresponding C2-substituted products are obtained in moderate to good yields and with good to excellent enantioselectivities.

Comment: On the basis of their recent experimental and theoretical investigations (J. Am. Chem. Soc. 2020, 142, 21091), the authors address several limitations, including the laborious synthesis of re-dox-active esters and low-yielding reactions. The successful introduction of easily accessible N -acylated primary amines as sources of α-amino radicals led to the establishment of a more generally applicable system with a broad substrate scope, with diacetyl as an inexpensive chromophore and chiral phosphoric acids to induce enantioselectivity.

[^0]
[^0]: SYNFACTS Contributors: Benjamin List, Joyce A. A. Grimm
 Synfacts 2021, 17(06), 0683 Published online: 18.05.2021
 DOI: 10.1055/s-0040-1706201; Reg-No.: B03821SF

