Synlett 2021; 32(01): 07-13
DOI: 10.1055/s-0040-1706416
synpacts
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Catalyzed Intermolecular C–H Carbonylation toward Amides

Yan-Lin Li
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. of China   Email: jibaoxia@licp.cas.cn
b   University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
Zheng-Yang Gu
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. of China   Email: jibaoxia@licp.cas.cn
c   College of Textiles and Clothing and Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, 224003, P. R. of China
,
Ji-Bao Xia
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. of China   Email: jibaoxia@licp.cas.cn
› Author Affiliations
We are grateful for the financial support provided by the NNSFC (21772208), the NSFC of Jiangsu Province (BK20161260), the Key Research Program of Frontier Sciences of CAS (QYZDJSSW-SLH051), and the Joint Open Fund of Jiangsu Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipment and Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (JH201863).
Further Information

Publication History

Received: 02 July 2020

Accepted after revision: 14 July 2020

Publication Date:
17 August 2020 (online)


Abstract

The amide linkage is one of the most important structural moieties in both chemistry and biology. Here, we briefly discuss recent advances in catalytic intermolecular C–H carbonylation reactions for the synthesis of amides, with particular attention to our intermolecular C–H amidation of arenes with carbon monoxide and organic azides to produce amides.

1 Introduction

2 Representative Methods for Amide Synthesis

3 C–H Aminocarbonylation with Carbon Monoxide and Amines

4 C–H Amidation to Amides with Carbon Monoxide and Azides

5 Summary and Outlook

 
  • References

    • 1a Ananthanarayanan VS, Tetreault S, Saint-Jean A. J. Med. Chem. 1993; 36: 1324
    • 1b Hill DJ, Mio MJ, Prince RB, Hughes TS, Moore JS. Chem. Rev. 2001; 101: 3893
    • 1c Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
  • 2 Graul A, Castaner J. Drugs Future 1997; 22: 956
  • 3 Ahmed AM, Doheim MF, Mattar OM, Sherif NA, Truong DH, Le Hoa PT, Hirayama K, Huy NT. J. Med. Virol. 2017; 90: 907
  • 4 Stilgenbauer S, Eichhorst B, Schetelig J, Hillmen P, Seymour JF, Coutre S, Jurczak W, Mulligan SP, Schuh A, Assouline S, Wendtner C.-M, Roberts AW, Davids MS, Bloehdorn J, Munir T, Böttcher S, Zhou L, Salem AH, Desai M, Chyla B, Arzt J, Kim SY, Verdugo M, Gordon G, Hallek M, Wierda WG. J. Clin. Oncol. 2018; 36: 1973
    • 5a Amino Acids, Peptides and Proteins in Organic Chemistry. Hughes AB. Wiley; Weinheim: 2011
    • 7a Dunetz JR, Magano J, Weisenburger GA. Org. Process Res. Dev. 2016; 20: 140
    • 7b El-Faham A, Albericio F. Chem. Rev. 2011; 111: 6557
    • 7c Montalbetti CA. G. N, Falque V. Tetrahedron 2005; 61: 10827
    • 8a Ishihara K. Tetrahedron 2009; 65: 1085
    • 8b Marcelli T. Angew. Chem. Int. Ed. 2010; 49: 6840
    • 8c Charville H, Jackson D, Hodges G, Whiting A. Chem. Commun. 2010; 46: 1813
    • 8d Lundberg H, Tinnis F, Adolfsson H. Chem. Eur. J. 2012; 18: 3822
    • 8e Allen CL, Chhatwal AR, Williams JM. J. Chem. Commun. 2012; 48: 666
    • 8f Lanigan RM, Sheppard TD. Eur. J. Org. Chem. 2013; 7453
    • 8g Morimoto H, Fujiwara R, Shimizu Y, Morisaki K, Ohshima T. Org. Lett. 2014; 16: 2018
    • 8h Szostak R, Shi SC, Meng GR, Lalancette R, Szostak M. J. Org. Chem. 2016; 81: 8091
    • 9a Ishihara K, Ohara S, Yamamoto H. J. Org. Chem. 1996; 61: 4196
    • 9b Al-Zoubi RM, Marion O, Hall DG. Angew. Chem. Int. Ed. 2008; 47: 2876
    • 9c Gernigon N, Al-Zoubi RM, Hall DG. J. Org. Chem. 2012; 77: 8386
    • 9d Yamashita R, Sakakura A, Ishihara K. Org. Lett. 2013; 15: 3654
    • 9e Fatemi S, Gernigon N, Hall DG. Green Chem. 2015; 17: 4016
    • 9f Ishihara K, Lu Y. Chem. Sci. 2016; 7: 1276
    • 9g Noda H, Furutachi M, Asada Y, Shibasaki M, Kumagai N. Nat. Chem. 2017; 9: 571
    • 9h Wang K, Lu Y, Ishihara K. Chem. Commun. 2018; 54: 5410
    • 9i Michigami K, Sakaguchi T, Takemoto Y. ACS Catal. 2020; 10: 683
    • 10a Pattabiraman VR, Bode JW. Nature 2011; 480: 471
    • 10b Allen CL, Williams JM. J. Chem. Soc. Rev. 2011; 40: 3405
    • 10c de Figueiredo RM, Suppo J.-S, Campagne J.-M. Chem. Rev. 2016; 116: 12029
    • 10d Sabatini MT, Boulton LT, Sneddon HF, Sheppard TD. Nat. Catal. 2019; 2: 10
    • 10e Wang X. Nat. Catal. 2019; 2: 98
    • 11a Bode JW, Sohn SS. J. Am. Chem. Soc. 2007; 129: 13798
    • 11b Chiang P.-C, Kim Y, Bode JW. Chem. Commun. 2009; 4566
    • 11c Vora HU, Rovis T. J. Am. Chem. Soc. 2007; 129: 13796
    • 11d De Sarkar S, Studer A. Org. Lett. 2010; 12: 1992
    • 12a Gusev DG. ACS Catal. 2017; 7: 6656
    • 12b Chen C, Hong SH. Org. Biomol. Chem. 2011; 9: 20
    • 12c Gunanathan C, Ben-David Y, Milstein D. Science 2007; 317: 790
    • 12d Fujita K.-i, Takahashi Y, Owaki M, Yamamoto K, Yamaguchi R. Org. Lett. 2004; 6: 2785
    • 12e Naota T, Murahashi S.-I. Synlett 1991; 693
    • 13a Sabot C, Kumar KA, Mioskowski C. Tetrahedron Lett. 2007; 48: 3863
    • 13b Yang X, Birman VB. Org. Lett. 2009; 11: 1499
    • 13c McPherson CG, Caldwell N, Jamieson C, Simpson I, Watson AJ. B. Org. Biomol. Chem. 2017; 15: 3507
    • 13d Lenstra DC, Nguyen DT, Mecinović J. Tetrahedron 2015; 71: 5547
    • 13e Nguyen DT, Lenstra DC, Mecinović J. RSC Adv. 2015; 5: 77658
    • 13f Sanz Sharley DD, Williams JM. J. Chem. Commun. 2017; 53: 2020
    • 14a Peng J.-B, Wu F.-P, Wu X.-F. Chem. Rev. 2019; 119: 2090
    • 14b Matsubara H, Kawamoto T, Fukuyama T, Ryu I. Acc. Chem. Res. 2018; 51: 2023
    • 14c Li Y, Hu Y, Wu X.-F. Chem. Soc. Rev. 2018; 47: 172
    • 14d Bai Y, Davis DC, Dai M. J. Org. Chem. 2017; 82: 2319
    • 14e Wu X.-F, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
  • 15 Brennführer A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
  • 16 Schoenberg A, Heck RF. J. Org. Chem. 1974; 39: 3327
    • 17a Liu J, Li HQ, Spannenberg A, Franke R, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2016; 55: 13544
    • 17b Zhang GJi X, Yu H, Yang L, Jiao P, Huang H. Tetrahedron Lett. 2016; 57: 383
    • 17c Dong K, Fang X, Jackstell R, Laurenczy G, Li Y, Beller M. J. Am. Chem. Soc. 2015; 137: 6053
    • 17d Shi R, Zhang H, Lu L, Gan P, Sha Y, Zhang H, Beller M, Lei A. Chem. Commun. 2015; 51: 3247
    • 17e Li W, Liu C, Zhang H, Ye K, Zhang G, Zhang W, Duan Z, You S, Lei A. Angew. Chem. Int. Ed. 2014; 53: 2443
    • 17f Li W, Wu X.-F. Chem. Eur. J. 2015; 21: 7374
    • 17g Yin Z, Wang Z, Li W, Wu X.-F. Eur. J. Org. Chem. 2017; 2017: 1769
    • 17h Ren L, Li X, Jiao N. Org. Lett. 2016; 18: 5852
    • 17i Li X, Li X, Jiao N. J. Am. Chem. Soc. 2015; 137: 9246
    • 17j Zhang J, Hou Y, Ma Y, Szostak M. J. Org. Chem. 2019; 84: 338
  • 18 Orito K, Horibata A, Nakamura T, Ushito H, Nagasaki H, Yuguchi M, Yamashita S, Tokuda M. J. Am. Chem. Soc. 2004; 126: 14342
    • 19a Zhu C, Liu J, Li M.-B, Bäckvall JE. Chem. Soc. Rev. 2020; 49: 341
    • 19b Liang D, Hu ZW, Peng J, Huang J, Zhu Q. Chem. Commun. 2013; 49: 173
    • 19c Rajeshkumar V, Lee T.-H, Chuang S.-C. Org. Lett. 2013; 15: 1468
    • 19d Taneda H, Inamoto K, Kondo Y. Org. Lett. 2016; 18: 2712
    • 19e Zhang C, Ding Y, Gao Y, Li S, Li G. Org. Lett. 2018; 20: 2595
    • 19f López B, Rodriguez A, Santos D, Albert J, Ariza X, Garcia J, Granell J. Chem. Commun. 2011; 47: 1054
    • 19g Albert J, Ariza X, Calvet T, Font-Bardia M, Garcia J, Granell J, Lamela A, López B, Martinez M, Ortega L, Rodriguez A, Santos D. Organometallics 2013; 32: 649
    • 19h McNally A, Haffemayer B, Collins BS. L, Gaunt MJ. Nature 2014; 510: 129
    • 19i Calleja J, Pla D, Gorman TW, Domingo V, Haffemayer B, Gaunt MJ. Nat. Chem. 2015; 7: 1009
    • 19j Willcox D, Chappell BG. N, Hogg KF, Calleja J, Smalley AP, Gaunt MJ. Science 2016; 354: 851
    • 19k Cabrera-Pardo JR, Trowbridge A, Nappi M, Ozaki K, Gaunt MJ. Angew. Chem. Int. Ed. 2017; 56: 11958
    • 19l Hogg KF, Trowbridge A, Alvarez-Pérez A, Gaunt MJ. Chem. Sci. 2017; 8: 8198
    • 19m Zhang L, Wang C, Han J, Huang Z.-B, Zhao Y. J. Org. Chem. 2016; 81: 5256
    • 19n Guo S, Wang F, Sun L, Zhang X, Fan X. Adv. Synth. Catal. 2018; 360: 2537
    • 19o Liang D, He Y, Zhu Q. Org. Lett. 2014; 16: 2748
    • 19p Han H, Yang S.-D, Xia J.-B. J. Org. Chem. 2019; 84: 3357
    • 19q Ho DK. H, Calleja J, Gaunt MJ. Synlett 2019; 30: 454
    • 20a Han H, Zhang T, Yang S.-D, Lan Y, Xia J.-B. Org. Lett. 2019; 21: 1749
    • 20b Bai X.-F, Mu Q.-C, Xu Z, Yang K.-F, Li L, Zheng Z.-J, Xia C.-G, Xu L.-W. ACS Catal. 2019; 9: 1431
  • 21 Zhang X, Dong S, Niu X, Li Z, Fan X, Zhang G. Org. Lett. 2016; 18: 4634
    • 22a Guan Z.-H, Chen M, Ren Z.-H. J. Am. Chem. Soc. 2012; 134: 17490
    • 22b Li W, Duan Z, Jiang R, Lei A. Org. Lett. 2015; 17: 1397
  • 23 Xing Q, Shi L, Lang R, Xia C, Li F. Chem. Commun. 2012; 48: 11023
  • 24 Xing Q, Lv H, Xia C, Li F. Chem. Commun. 2017; 53: 6914
  • 25 Xie P, Xia C, Huang H. Org. Lett. 2013; 15: 3370
  • 26 Li Y, Dong K, Zhu F, Wang Z, Wu X.-F. Angew. Chem. Int. Ed. 2016; 55: 7227
  • 27 Lu L, Pei X, Mei Y, Deng Y, Zhang H, Zhang L, Lei A. Chem 2018; 4: 2861
    • 28a Nguyen Q, Sun K, Driver TG. J. Am. Chem. Soc. 2012; 134: 7262
    • 28b Dequirez G, Pons V, Dauban P. Angew. Chem. Int. Ed. 2012; 51: 7384
    • 28c Olivos Suarez AI, Lyaskovskyy V, Reek JN, van der Vlugt JI, de Bruin B. Angew. Chem. Int. Ed. 2013; 52: 12510
    • 28d Zhang Z, Huang BL, Qiao GY, Zhu L, Xiao F, Chen F, Fu B, Zhang ZH. Angew. Chem. Int. Ed. 2017; 56: 4320
    • 28e Gu Z.-Y, Liu Y, Wang F, Bao X, Wang S.-Y, Ji S.-J. ACS Catal. 2017; 7: 3893
    • 28f Li C, Lang K, Lu H, Hu Y, Cui X, Wojtas L, Zhang XP. Angew. Chem. Int. Ed. 2018; 57: 16837
    • 28g Lee S, Lei H, Rovis T. J. Am. Chem. Soc. 2019; 141: 12536
    • 28h Jung H, Keum H, Kweon J, Chang S. J. Am. Chem. Soc. 2020; 142: 5811
    • 28i Corbin JR, Ketelboeter DR, Fernández I, Schomaker JM. J. Am. Chem. Soc. 2020; 142: 5568
    • 29a Shimbayashi T, Sasakura K, Eguchi A, Okamoto K, Ohe K. Chem. Eur. J. 2019; 25: 3156
    • 29b Kuijpers PF, van der Vlugt JI, Schneider S, de Bruin B. Chem. Eur. J. 2017; 23: 13819
    • 29c Intrieri D, Zardi P, Caselli A, Gallo E. Chem. Commun. 2014; 50: 11440
    • 30a Collman JP, Kubota M, Hosking JW. J. Am. Chem. Soc. 1967; 89: 4809
    • 30b Bennett RP, Hardy WB. J. Am. Chem. Soc. 1968; 90: 3295
    • 30c La Monica G, Cenini S. J. Organomet. Chem. 1981; 216: C35
    • 30d Jenkins DM, Betley TA, Peters JC. J. Am. Chem. Soc. 2002; 124: 11238
    • 30e Doi H, Barletta J, Suzuki M, Noyori R, Watanabe Y, Långström B. Org. Biomol. Chem. 2004; 2: 3063
    • 30f Ren L, Jiao N. Chem. Commun. 2014; 50: 3706
    • 30g Zhao J, Li Z, Yan S, Xu SY, Wang M.-A, Fu B, Zhang Z. Org. Lett. 2016; 18: 1736
    • 30h Zhao J, Li Z, Song S, Wang M.-A, Fu B, Zhang Z. Angew. Chem. Int. Ed. 2016; 55: 5545
    • 30i Feng J, Zhang Z, Li X, Zhang Z. Synlett 2020; 31: 1040
  • 31 Yuan S.-W, Han H, Li Y.-L, Wu X, Bao X, Gu Z.-Y, Xia J.-B. Angew. Chem. Int. Ed. 2019; 58: 8887
  • 32 Schembri LS, Eriksson J, Odell LR. J. Org. Chem. 2019; 84: 6970