Synlett 2021; 32(02): 202-206
DOI: 10.1055/s-0040-1706548
cluster
Modern Heterocycle Synthesis and Functionalization

Rhodium(III)-Catalyzed C–H Activation: Annulation of Petrochemical Feedstocks for the Construction of Isoquinolone Scaffolds

a   Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, USA
,
Dehuan Kong
b   BioDuro, No. 233 North FuTe Road, WaiGaoQiao Free Trade Zone, Shanghai 200131, P. R. of China
,
Wei Li
b   BioDuro, No. 233 North FuTe Road, WaiGaoQiao Free Trade Zone, Shanghai 200131, P. R. of China
,
a   Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, USA
,
a   Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, USA
,
Sylvie K. Sakata
a   Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, USA
,
Nicole Sun
b   BioDuro, No. 233 North FuTe Road, WaiGaoQiao Free Trade Zone, Shanghai 200131, P. R. of China
,
a   Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, USA
› Author Affiliations


This manuscript is dedicated to the memory ofProf. Keith Fagnou in celebration of his impact on the field of heterocycle synthesis and functionalization through metal-catalyzed C–H activation

Abstract

We describe a simple and robust procedure for the Rh(III)-catalyzed [4+2] cycloaddition of feedstock gases enabled through C–H activation. A diverse set of 3,4-dihydroisoquinolones and 3-methylisoquinolones have been prepared in good to excellent yields. The effects of using ethylene and propyne as coupling partners on C–H site selectivity have also been explored with a representative set of substrates and are discussed herein.

Supporting Information



Publication History

Received: 25 August 2020

Accepted after revision: 29 September 2020

Article published online:
05 January 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Kumpf RA, McAlpine IJ, McTigue MA, Patman R, Rui EY, Tatlock JH, Tran-Dubé MB, Wythes MJ. WO2017212385, 2017
  • 2 For a selected review on palladium-catalyzed allylic alkylation with heteroatom nucleophiles, see: Trost BM, Zhang T, Sieber JD. Chem. Sci. 2010;  1: 427

    • For recent reviews of the Pictet–Spengler reaction, see:
    • 3a Calcaterra A, Mangiardi L, Monache GD, Quaglio D, Balducci S, Berardozzi S, Iazzetti A, Franzini R, Botta B, Ghirga F. Molecules 2020; 25: 414
    • 3b Gholamzadeh P. In Advances in Heterocyclic Chemistry, Vol. 127. Scriven EF. V, Ramsden CA. Elsevier; Amsterdam: 2019: 153
  • 4 Alajarín R, Burgos C. In Modern Heterocyclic Chemistry . Alvarez-Builla J, Vaquero JJ, Barluenga J. Wiley-VCH; Weinheim: 2011: 1527
  • 5 Muralirajan K, Cheng C.-H. In Transition Metal-Catalyzed Heterocycle Synthesis via C–H Activation . Wu X.-F. Wiley-VCH; Weinheim: 2016: 117
    • 7a Guimond N, Gouliaras C, Fagnou K. J. Am. Chem. Soc. 2010; 132: 6908
    • 7b Hyster TK, Rovis T. J. Am. Chem. Soc. 2010; 132: 10565
    • 7c Mochida S, Umeda N, Hirano K, Satoh T, Miura M. Chem. Lett. 2010; 39: 744
    • 7d Song G, Chen D, Pan C.-L, Crabtree RH, Li X. J. Org. Chem. 2010; 75: 7487
    • 8a Guimond N, Gorelsky SI, Fagnou K. J. Am. Chem. Soc. 2011; 133: 6449
    • 8b Rakshit S, Grohmann C, Besset T, Glorius F. J. Am. Chem. Soc. 2011; 133: 2350

      For selected references, see:
    • 9a Scott JD, Williams RM. Chem. Rev. 2002; 102: 1669
    • 9b Welsch ME, Snyder SA, Stockwell BR. Curr. Opin. Chem. Biol. 2010; 14: 347
    • 9c Palmer N, Peakman TM, Norton D, Rees DC. Org. Biomol. Chem. 2016; 14: 1599
    • 9d Murray CW, Rees DC. Angew. Chem. Int. Ed. 2016; 55: 488
    • 9e Singh IP, Shah P. Expert Opin. Ther. Pat. 2017; 27: 17

      For selected examples of rhodium-catalyzed regioselective alkene annulation processes, see:
    • 10a Shabaan S, Davies C, Merten C, Flegel J, Otte F, Strohmann C, Waldmann H. Chem. Eur. J. 2020; 26: 10729
    • 10b Lee S, Semakul N, Rovis T. Angew. Chem. Int. Ed. 2020; 59: 4965
    • 10c Barber JS, Scales S, Tran-Dubé M, Wang F, Sach NW, Bernier L, Collins MR, Zhu J, McAlpine IJ, Patman RL. Org. Lett. 2019; 21: 5689
    • 10d Trifonova EA, Ankudinov NM, Kozlov MV, Sharipov MY, Nelyubina YV, Perekalin DS. Chem. Eur. J. 2018; 24: 16570
    • 10e Wu J.-Q, Zhang S-S, Gao H, Qi Z, Zhou C.-J, Ji W-W, Liu Y, Chen Y, Li X, Wang H. J. Am. Chem. Soc. 2017; 139: 3537
    • 10f Hyster TK, Dalton DM, Rovis T. Chem. Sci. 2015; 6. 254
    • 10g Wodrich MD, Ye B, Conthier JF, Corminboeuf C, Cramer N. Chem. Eur. J. 2014; 20: 15409
    • 10h Shi Z, Boultadakis-Arapinis M, Koester DC, Glorius F. Chem. Commun. 2014; 50: 2650
    • 10i Davis TA, Hyster TK, Rovis T. Angew. Chem. Int. Ed. 2013; 52: 14181
    • 10j Huckins JR, Bercot EA, Thiel OR, Hwang T.-L, Bio MM. J. Am. Chem. Soc. 2013; 135: 14492
    • 10k Presset M, Oehlrich D, Rombouts F, Molander GA. Org. Lett. 2013; 15: 1528
    • 10l Wang H, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 7318

      For enantioselective rhodium-catalyzed alkene annulation processes, see:
    • 11a Cui W.-J, Wu Z.-J, Gu Q, You S.-L. J. Am. Chem. Soc. 2020; 142: 7379
    • 11b Hassan IS, Ta AN, Danneman MW, Semakul N, Burns M, Basch CH, Dippon VN, McNoughton BR, Rovis T. J. Am. Chem. Soc. 2019; 141: 4815
    • 11c Trifonova EA, Ankudinov NM, Mikhaylov AA, Chusov DA, Nelyubina YV, Perekalin DS. Angew. Chem. Int. Ed. 2018; 57: 7714
    • 11d Jia Z.-J, Merten C, Gontla R, Daniliuc CG, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2017; 56: 2429
    • 11e Ye B, Cramer N. Science 2012; 338: 504
    • 11f Hyster TK, Knorr L, Ward TR, Rovis T. Science 2012; 338: 500
  • 12 For a recent review on the use of feedstock reagents in metal-catalyzed C–C bond formation via reductive C=O coupling, see: Doerksen RS, Meyer CC, Krische MJ. Angew. Chem. Int. Ed. 2019; 58: 14055

    • For selected references, see:
    • 13a Leeson PD, Springthorpe B. Nat. Rev. Drug Discovery 2007; 6: 881
    • 13b Ryckmans T, Edwards MP, Horne VA, Correia AM, Owen DR, Thompson LR, Tran I, Tutt MF, Young T. Bioorg. Med. Chem. Lett. 2009; 19: 4406
    • 13c Edwards MP, Price DA. Ann. Reports Med. Chem. 2010; 45: 381
    • 13d Freeman-Cook KD, Hoffman RL, Johnson TW. Future Med. Chem. 2013; 5: 113
    • 13e Meanwell NA. Chem. Res. Toxicol. 2016; 29: 564
    • 13f Johnson TW, Gallego RA, Edwards MP. J. Med. Chem. 2018; 61: 6401
  • 14 Kulkarni MR, Gaikwad ND. ChemistrySelect 2020; 5: 8157
  • 15 For an isolated example cobalt-catalyzed aminoquinoline-directed annulation of ethylene, see: Grigorjeva L, Daugulis O. Org. Lett. 2014; 16: 4684
  • 16 For a highlight on the advantageous effects of fluorinated alcohol solvents on C–H functionalization reactions, see: Wencel-Delord J, Colobert F. Org. Chem. Front. 2016; 3: 394
  • 17 General Procedure for Ethylene (2) Insertion To a vial, equipped with a magnetic stir bar and rubber septum, was added O-pivaloyl benzhydroxamic acid (1, 1.00 mmol, 1.0 equiv), [Cp*RhCl2]2 (0.025 mmol, 2.5 mol%), and CsOPiv (2.00 mmol, 2.0 equiv). The vial was purged with ethylene (2) under dynamic vacuum for 10 s. Then trifluoroethanol (5.0 mL, 0.2 M) was added, and the reaction mixture was sparged with ethylene (2) for 2 min. The vial was stirred under a balloon of ethylene (2; atmospheric pressure) at room temperature for 16–20 h. After 16–20 h, the reaction was filtered using EtOAc, and the filtrate was concentrated under reduced pressure. The crude residue was purified via flash column chromatography to afford dihydroisoquinolones 3. Representative Compound 3g Following the general procedure using 1g (424 mg, 1.00 mmol, 1.0 equiv), purification via flash column chromatography (12 g SiO2, Isco, 0–10% MeOH/DCM) afforded dihydroisoquinolone 3g (335.4 mg, 96% yield) as a white solid. 1H NMR (400 MHz, DMSO-d 6): δ = 7.87 (br s, 1 H), 7.61–7.50 (m, 2 H), 7.45–7.34 (m, 3 H), 7.34–7.26 (m, 1 H), 5.18 (s, 2 H), 3.33–3.28 (m, 2 H), 2.86 (t, J = 6.2 Hz, 2 H). 13C NMR (101 MHz, DMSO-d 6): δ = 161.5 (d, J = 2.2 Hz), 154.7 (d, J = 2.2 Hz), 149.0 (d, J = 236.2 Hz), 136.9, 129.5 (d, J = 19.8 Hz), 128.2, 127.5, 127.0, 119.3 (d, J = 2.2 Hz), 117.3, 111.4 (d, J = 23.5 Hz), 70.6, 38.2, 22.8 (d, J = 2.2 Hz). 19F NMR (376 MHz, DMSO-d 6): δ = –122.1 (s).
  • 18 General Procedure for Propyne (4) Insertion To a vial, equipped with a magnetic stir bar and rubber septum, was added O-pivaloyl benzhydroxamic acid (1, 0.300 mmol, 1.0 equiv), [Cp*RhCl2]2 (0.0075 mmol, 2.5 mol%), and CsOPiv (0.600 mmol, 2.0 equiv). The vial was purged with propyne (4) under dynamic vacuum for 10 s. Then trifluoroethanol (1.5 mL, 0.2 M) was added, and the reaction mixture was sparged with propyne (4) for 2 min. The vial was stirred under a balloon of propyne (4; atmospheric pressure) at room temperature for 16–20 h. The balloon deflated slowly overnight but this did not inhibit the reaction. After 16–20 h, the reaction was transferred to a flask using EtOAc and concentrated under reduced pressure. The crude residue was purified via flash column chromatography to afford isoquinolones 5. Representative Compound 5a Following the general procedure using 1a (86 mg, 0.300 mmol, 1.0 equiv), purification via flash column chromatography (4 g SiO2, Biotage, 0–10% MeOH/DCM) afforded isoquinolone 5a (62 mg, 92% yield) as a white solid. 1H NMR (400 MHz, DMSO-d 6): δ = 11.57 (br s, 1 H), 8.30 (d, J = 8.4 Hz, 1 H), 7.97 (s, 1 H), 7.66 (dd, J = 8.4, 1.6 Hz, 1 H), 6.48 (s, 1 H), 2.24 (s, 3 H). 13C NMR (101 MHz, DMSO-d 6): δ = 161.7, 140.6, 138.4, 132.1 (q, J = 31.7 Hz), 128.1, 126.4, 123.9 (q, J = 272.70 Hz), 122.8 (q, J = 4.12 Hz), 120.9 (q, J = 3.4 Hz), 102.6, 18.8. 19F NMR (376 MHz, DMSO-d 6): δ = –61.6.
  • 19 Small-molecule X-ray crystal structures corroborating the regiochemical assignment of 5b (CCDC 2024479) and 5g (CCDC 2024480) have been obtained and deposited. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 20 Handy ST, Zhang Y. Chem. Commun. 2006; 299