Synlett 2021; 32(14): 1397-1405
DOI: 10.1055/s-0040-1706659
account

Developing a Methodology for Catalytic Asymmetric Crotylation of Aldehydes

Aleksandr E. Rubtsov
a   Department of Chemistry, Perm State University, Bukireva 15, Perm 614990, Russian Federation
,
b   Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
› Author Affiliations
This work was supported by Russian Science Foundation grant 18-73-10156.


Abstract

Asymmetric crotylation has firmly earned a place among the set of valuable synthetic tools for stereoselective construction of carbon skeletons. For a long time the field was heavily dominated by reagents bearing stoichiometric chiral auxiliaries, but now catalytic methods are gradually taking center stage, and the area continues to develop rapidly. This account focuses primarily on preformed organometallic reagents based on silicon and, to some extent, boron. It narrates our endeavors to design new and efficient chiral Lewis base catalysts for the asymmetric addition of crotyl(trichloro)silanes to aldehydes. It also covers the development of a novel protocol for kinetic resolution of racemic secondary allylboronates to give enantio- and diastereomerically enriched linear homoallylic alcohols. As a separate topic, cross-crotylation of aldehydes by using enantiopure branched homoallylic alcohols as a source of crotyl groups is discussed. Finally, the synthetic credentials of the developed methodology are illustrated by total syntheses of marine natural products, in which crotylation plays a key role in setting up stereogenic centers.

1 Introduction

2 Pyridine N-Oxides as Lewis Base Catalysts

3 Bipyridine N,N′-Dioxides as Lewis Base Catalysts

4 Chiral Allylating Reagents

5 Synthetic Applications

6 Concluding Remarks



Publication History

Received: 27 November 2020

Accepted after revision: 09 December 2020

Article published online:
18 January 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Denmark SE, Fu J. Chem. Rev. 2003; 103: 2763
  • 2 Kennedy JW. J, Hall DG. Angew. Chem. Int. Ed. 2003; 42: 4732
  • 3 Yus M, González-Gómez JC, Foubelo F. Chem. Rev. 2011; 111: 7774
  • 4 Kim SW, Zhang W, Krische MJ. Acc. Chem. Res. 2017; 50: 2371
  • 5 Ketcham JM, Shin I, Montgomery TP, Krische MJ. Angew. Chem. Int. Ed. 2014; 53: 9142
  • 6 McInturff EL, Yamaguchi E, Krische MJ. J. Am. Chem. Soc. 2012; 134: 20628
  • 7 Zbieg JR, Yamaguchi E, McInturff EL, Krische MJ. Science 2012; 336: 324
  • 8 Kim IS, Han SB, Krische MJ. J. Am. Chem. Soc. 2009; 131: 2514
  • 9 Denmark SE, Weber EJ. Helv. Chim. Acta 1983; 66: 1655
  • 10 Brown HC, Bhat KS. J. Am. Chem. Soc. 1986; 108: 293
  • 11 Brown HC, Bhat KS. J. Am. Chem. Soc. 1986; 108: 5919
  • 12 Roush WR, Halterman RL. J. Am. Chem. Soc. 1986; 108: 294
  • 13 Roush WR, Ando K, Powers DB, Palkowitz AD, Halterman RL. J. Am. Chem. Soc. 1990; 112: 6339
  • 14 Hackman BM, Lombardi PJ, Leighton JL. Org. Lett. 2004; 6: 4375
  • 15 Kim H, Ho S, Leighton JL. J. Am. Chem. Soc. 2011; 133: 6517
  • 16 Iseki K, Kuroki Y, Takahashi M, Kishimoto S, Kobayashi Y. Tetrahedron 1997; 53: 3513
  • 17 Denmark SE, Coe DM, Pratt NE, Griedel BD. J. Org. Chem. 1994; 59: 6161
  • 18 Denmark SE, Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560
  • 19 Koukal, P.; Ulč, J.; Nečas, D.; Kotora, M. In Pyridine N-Oxides and Derivatives Thereof in Organocatalysis. Heterocyclic N-Oxides. Topics in Heterocyclic Chemistry, Vol. 53; Larionov, O., Ed.; Springer: Cham, 2017, 29.
  • 20 Wrzeszcz Z, Siedlecka R. Molecules 2020; 25: 330
  • 21 Malkov, A. V. In Sustainable Catalysis: Without Metals or Other Endangered Elements, Part 2; North, M., Ed.; Royal Society of Chemistry: Cambridge, 2014, Chap. 21, 317.
  • 22 Malkov, A. V.; Kočovský, P. In Lewis Base-Catalysis in Organic Synthesis, Section IVb; Vedejs, E.; Denmark, S. E., Ed.; Wiley-VCH: Weinheim, 2016, Chap. 20 1013.
  • 23 Malkov AV, Bella M, Langer V, Kočovský P. Org. Lett. 2000; 2: 3047
  • 24 Malkov AV, Pernazza D, Bell M, Bella M, Massa A, Teplý F, Meghani P, Kočovský P. J. Org. Chem. 2003; 68: 4727
  • 25 Nakajima M, Saito M, Shiro M, Hashimoto S.-i. J. Am. Chem. Soc. 1998; 120: 6419
  • 26 Malkov AV, Bell M, Orsini M, Pernazza D, Massa A, Herrmann P, Meghani P, Kočovský P. J. Org. Chem. 2003; 68: 9659
  • 27 Malkov AV, Orsini M, Pernazza D, Muir KW, Langer V, Meghani P, Kočovský P. Org. Lett. 2002; 4: 1047
  • 28 Malkov AV, Bell M, Vassieu M, Bugatti V, Kočovský P. J. Mol. Catal. A: Chem. 2003; 196: 179
  • 29 Malkov AV, Bell M, Castelluzzo F, Kočovský P. Org. Lett. 2005; 7: 3219
  • 30 Malkov AV, Stoncius S, Bell M, Castelluzzo F, Ramírez-López P, Biedermannová L, Langer V, Rulísek L, Kočovský P. Chem. Eur. J. 2013; 19: 9167
  • 31 Malkov AV, Barłóg M, Jewkes Y, Mikusek J, Kočovský P. J. Org. Chem. 2011; 76: 4800
  • 32 Malkov AV, Dufková L, Farrugia L, Kočovský P. Angew. Chem. Int. Ed. 2003; 42: 3674
  • 33 Malkov AV, Ramírez-López P, Biedermannová L, Rulísek L, Dufková L, Kotora M, Zhu F, Kočovský P. J. Am. Chem. Soc. 2008; 130: 5341
  • 34 Malkov AV, Kočovský P. Eur. J. Org. Chem. 2007; 29
  • 35 Shimada T, Kina A, Ikeda S, Hayashi T. Org. Lett. 2002; 4: 2799
  • 36 Shimada T, Kina A, Hayashi T. J. Org. Chem. 2003; 68: 6329
  • 37 Kadlčíková A, Hrdina R, Valterová I, Kotora M. Adv. Synth. Catal. 2009; 351: 1279
  • 38 Hrdina R, Dračínský M, Valterová I, Hodačová J, Císařová I, Kotora M. Adv. Synth. Catal. 2008; 350: 1449
  • 39 Malkov AV, Westwater M.-M, Gutnov A, Ramírez-López P, Friscourt F, Kadlčíková A, Hodačová J, Rankovic Z, Kotora M, Kočovský P. Tetrahedron 2008; 64: 11335
  • 40 Bai B, Shen L, Ren J, Zhu J.-H. Adv. Synth. Catal. 2012; 354: 354
  • 41 O’Hora PS, Incerti-Pradillos CA, Kabeshov MA, Shipilovskikh SA, Rubtsov AE, Elsegood MR. J, Malkov AV. Chem. Eur. J. 2015; 21: 4551
  • 42 Fukazawa Y, Vaganov VY, Shipilovskikh SA, Rubtsov AE, Malkov AV. Org. Lett. 2019; 21: 4798
  • 43 Huang Y, Yang L, Shao P, Zhao Y. Chem. Sci. 2013; 4: 3275
  • 44 Sumida S.-i, Ohga M, Mitani J, Nokami J. J. Am. Chem. Soc. 2000; 122: 1310
  • 45 Loh T.-P, Tan K.-T, Hu Q.-Y. Angew. Chem. Int. Ed. 2001; 40: 2921
  • 46 Malkov AV, Kabeshov MA, Barłóg M, Kočovský P. Chem. Eur. J. 2009; 15: 1570
  • 47 Malkov AV, Kysilka O, Edgar M, Kadlčíková A, Kotora M, Kočovský P. Chem. Eur. J. 2011; 17: 7162
  • 48 Nokami J, Nomiyama K, Shafi SM, Kataoka K. Org. Lett. 2004; 6: 1261
  • 49 Lee C.-LK, Lee C.-HA, Tan K.-T, Loh T.-P. Org. Lett. 2004; 6: 1281
  • 50 Andersen MW, Hildebrandt B, Köster G, Hoffmann RW. Chem. Ber. 1989; 122: 1777
  • 51 Hoffmann RW. Pure Appl. Chem. 1988; 60: 123
  • 52 Hoffmann RW, Weidmann U. J. Organomet. Chem. 1980; 195: 137
  • 53 Rauniyar V, Zhai H, Hall DG. J. Am. Chem. Soc. 2008; 130: 8481
  • 54 Jain P, Antilla JC. J. Am. Chem. Soc. 2010; 132: 11884
  • 55 Incerti-Pradillos CA, Kabeshov MA, Malkov AV. Angew. Chem. Int. Ed. 2013; 52: 5338
  • 56 Villar L, Orlov NV, Kondratyev NS, Uria U, Vicario JL, Malkov AV. Chem. Eur. J. 2018; 24: 16262
  • 57 Sugiura M, Hirano K, Kobayashi S. J. Am. Chem. Soc. 2004; 126: 7182
  • 58 Look SA, Fenical W, Matsumoto GK, Clardy J. J. Org. Chem. 1986; 51: 5140
  • 59 Rodríguez AD, Ramírez C. J. Nat. Prod. 2001; 64: 100
  • 60 Correa H, Aristizabal F, Duque C, Kerr R. Mar. Drugs 2011; 9: 334
  • 61 de Armas Cesati J, Hoveyda AH. J. Am. Chem. Soc. 2004; 126: 96
  • 62 Davies HM. L, Walji AM. Angew. Chem. Int. Ed. 2005; 44: 1733
  • 63 Yadav JS, Basak AK, Srihari P. Tetrahedron Lett. 2007; 48: 2841
  • 64 Elford TG, Nave S, Sonawane RP, Aggarwal VK. J. Am. Chem. Soc. 2011; 133: 16798
  • 65 Yadav JS, Thirupathaiah B, Al Ghamdi AA. K. Eur. J. Org. Chem 2012; 2072
  • 66 Davies HM. L, Dai X. Tetrahedron 2006; 62: 10477
  • 67 Tkachenko A, Kashevarova NM, Sidorov RY, Nesterova LY, Akhova AV, Tsyganov IV, Vaganov VY, Shipilovskikh SA, Rubtsov AE, Malkov AV. Cell Chem. Biol. 2021; in press DOI: 10.2139/ssrn.3696759.
  • 68 Wang H, Jain P, Antilla JC, Houk KN. J. Org. Chem. 2013; 78: 1208
  • 69 Grayson MN, Pellegrinet SC, Goodman JM. J. Am. Chem. Soc. 2012; 134: 2716
  • 70 Jiang Y, Schaus SE. Angew. Chem. Int. Ed. 2017; 56: 1544
  • 71 Barnett DS, Moquist PN, Schaus SE. Angew. Chem. Int. Ed. 2009; 48: 8679
  • 72 Chen JL.-Y, Scott HK, Hesse MJ, Willis CL, Aggarwal VK. J. Am. Chem. Soc. 2013; 135: 5316
  • 73 Chen JL.-Y, Aggarwal VK. Angew. Chem. Int. Ed. 2014; 53: 10992
  • 74 Chen J, Captain B, Takenaka N. Org. Lett. 2011; 13: 1654
  • 75 Vaganov VY, Fukazawa Y, Kondratyev NS, Shipilovskikh SA, Wheeler SE, Rubtsov AE, Malkov AV. Adv. Synth. Catal. 2020; 362: 5467