Nickel-Catalyzed Enantioconvergent Coupling of Racemic Partners

Significance: Fu and co-workers report a nickel-catalyzed doubly enantioconvergent alkyl–alkyl coupling of racemic partners that proceeds with unprecedented selectivity. The authors employed a chiral nickel catalytic system that generates the product as a single stereoisomer from racemic propargylic halides and racemic β-zincated amides.

Comment: The authors propose that the enantioconvergence of the starting materials is facilitated by a radical intermediate arising from both starting materials. The presence of radical intermediates was inferred by the TEMPO adducts formed from both the electrophile and nucleophile partners in the mechanistic study.

Selected derivatizations of products:

Selected examples:

Conditions:

A) NiCl₂·glyme (10 mol%), (S)-L1 (12 mol%), Ph₂P(CH₂)₅PPh₂ (10 mol%), THF, –5 °C

B) NiCl₂·glyme (12 mol%), (S)-L1 (15 mol%), Ph₂P(CH₂)₅PPh₂ (9 mol%), THF, 5 °C

C) NiBr₂·glyme (10 mol%), (S/R)-L2 (13 mol%), LiCl (1.2 equiv), THF, r.t.

SYNFACTS Contributors: Mark Lautens, Randy Sanichar

Synfacts 2020, 16(07), 0797 Published online: 17.06.2020

DOI: 10.1055/s-0040-1707028; Reg-No.: L06320SF

©Georg Thieme Verlag Stuttgart · New York