Synthesis 2020; 52(19): 2781-2794
DOI: 10.1055/s-0040-1707154
short review
© Georg Thieme Verlag Stuttgart · New York

Anodic Oxidation as an Enabling Tool for the Synthesis of Natural Products

Leander Geske
,
Eisuke Sato
,
Till Opatz
Department Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, 55128 Mainz, Germany   Email: opatz@uni-mainz.de
› Author Affiliations
Financial support by the Alexander von Humboldt-Stiftung in the form of a postdoctoral fellowship (Dr. Eiskue Sato) is gratefully acknowledged.
Further Information

Publication History

Received: 09 April 2020

Accepted after revision: 12 May 2020

Publication Date:
22 June 2020 (online)


Dedicated to the memory of Professor Jun-ichi Yoshida (1952–2019)

Abstract

Electrochemistry provides a valuable toolbox for organic synthesis and offers an appealing, environmentally benign alternative to the use of stoichiometric quantities of chemical oxidants or reductants. Its potential to control current efficiency along with providing alternative reaction conditions in a classical sense makes electrochemistry a suitable method for large-scale industrial transformations as well as for laboratory applications in the synthesis of complex molecular architectures. Even though research in this field has intensified over the recent decades, many synthetic chemists still hesitate to add electroorganic reactions to their standard repertoire, and hence, the full potential of preparative organic electrochemistry has not yet been unleashed. This short review highlights the versatility of anodic transformations by summarizing their application in natural product synthesis.

1 Introduction

2 Shono-Type Oxidation

3 C–N/N–N Bond Formation

4 Aryl–Alkene/Aryl–Aryl Coupling

5 Cycloadditions Triggered by Oxidation of Electron-Rich Arenes

6 Spirocycles

7 Miscellaneous Transformations

8 Future Prospects

 
  • References

  • 1 Boufridi A, Quinn RJ. Annu. Rev. Pharmacol. Toxicol. 2018; 58: 451
  • 2 Newman DJ, Cragg GM. J. Nat. Prod. 2016; 79: 629
  • 3 Patridge E, Gareiss P, Kinch MS, Hoyer D. Drug Discovery Today 2016; 21: 204
  • 4 Cragg GM, Grothaus PG, Newman DJ. Chem. Rev. 2009; 109: 3012
  • 5 Ladenburg A. Chem. Ber. 1886; 19: 2578
  • 6 Sertürner FW. A. Ann. Phys. (Berlin) 1817; 25: 56
  • 7 Sertürner FW. A. J. Pharm. Ärzte Apotheker 1811; 20: 99
  • 8 Sertürner FW. A. J. Pharm. Ärzte Apotheker 1806; 14: 47
  • 9 Itoh H, Inoue M. Chem. Rev. 2019; 119: 10002
  • 10 Gao K, Zhang Y.-G, Wang Z, Ding H. Chem. Commun. 2019; 55: 1859
  • 11 Yin Z, He Y, Chiu P. Chem. Soc. Rev. 2018; 47: 8881
  • 12 Romero KJ, Galliher MS, Pratt DA, Stephenson CR. J. Chem. Soc. Rev. 2018; 47: 7851
  • 13 Takao K.-i, Munakata R, Tadano K.-i. Chem. Rev. 2005; 105: 4779
  • 14 Quirante J, Escolano C, Bosch J, Bonjoch J. J. Chem. Soc., Chem. Commun. 1995; 2141
  • 15 Jasperse CP, Curran DP, Fevig TL. Chem. Rev. 1991; 91: 1237
  • 16 Singh AK, Bakshi RK, Corey EJ. J. Am. Chem. Soc. 1987; 109: 6187
  • 17 Shatskiy A, Lundberg H, Kärkäs MD. ChemElectroChem 2019; 6: 4067
  • 18 Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 6018
  • 19 Frontana-Uribe BA, Little RD, Ibanez JG, Palma A, Vasquez-Medrano R. Green Chem. 2010; 12: 2099
  • 20 Volta AG. A. Nat. Philos. Chem. Arts 1800; 4: 179
  • 21 Faraday M. Ann. Phys. Leipzig 1834; 43: 438
  • 22 Kolbe H. J. Prakt. Chem. 1847; 41: 137
  • 23 Production of Aluminum: The Hall-Héroult Process, National Historic Chemical Landmark. American Chemical Society; Washington DC: 1997. ; http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/aluminumprocess.html (accessed Oct. 17, 2019)
  • 24 Crook J, Mousavi A. Environ. Forensics 2016; 17: 211
  • 25 Will FG. J. Electroanal. Chem. 1997; 426: 177
  • 26 Hickling A. Trans. Faraday Soc. 1942; 38: 27
  • 27 Hudlicky T, Claeboe CD, Brammer LE, Koroniak L, Butora G, Ghiviriga I. J. Org. Chem. 1999; 64: 4909
  • 28 Pattenden G, Teague SJ. J. Chem. Soc., Perkin Trans. 1 1988; 1077
  • 29 Tatsuya S, Naoki K. Chem. Lett. 1987; 16: 697
  • 30 Little RD, Muller GW. J. Am. Chem. Soc. 1981; 103: 2744
  • 31 Sowell CG, Wolin RL, Little RD. Tetrahedron Lett. 1990; 31: 485
  • 32 Atobe M, Tateno H, Matsumura Y. Chem. Rev. 2018; 118: 4541
  • 33 Pletcher D, Green RA, Brown RC. D. Chem. Rev. 2018; 118: 4573
  • 34 Yoshida J.-i, Suga S. Chem. Eur. J. 2002; 8: 2650
  • 35 Listratova AV, Sbei N, Voskressensky LG. Eur. J. Org. Chem. 2020; 2012
  • 36 Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492
  • 37 Steckhan E. Angew. Chem. Int. Ed. 1986; 25: 683
  • 38 Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
  • 39 Moeller KD. Chem. Rev. 2018; 118: 4817
  • 40 Okada Y, Chiba K. Chem. Rev. 2018; 118: 4592
  • 41 Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706
  • 42 Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594
  • 43 Yoshida J.-i, Shimizu A, Hayashi R. Chem. Rev. 2018; 118: 4702
  • 44 Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
  • 45 Horn EJ, Rosen BR, Baran PS. ACS Cent. Sci. 2016; 2: 302
  • 46 Francke R. Beilstein J. Org. Chem. 2014; 10: 2858
  • 47 Jones AM, Banks CE. Beilstein J. Org. Chem. 2014; 10: 3056
  • 48 Moeller KD. Tetrahedron 2000; 56: 9527
  • 49 Shono T. Top. Curr. Chem. 1988; 148: 131
  • 50 Sperry JB, Wright DL. Chem. Soc. Rev. 2006; 35: 605
  • 51 Shono T, Matsumura Y, Tsubata K. J. Am. Chem. Soc. 1981; 103: 1172
  • 52 Lennartz M, Sadakane M, Steckhan E. Tetrahedron 1999; 55: 14407
  • 53 Kardassis G, Brungs P, Steckhan E. Tetrahedron 1998; 54: 3471
  • 54 Danielmeier K, Schierle K, Steckhan E. Tetrahedron 1996; 52: 9743
  • 55 Lennartz M, Steckhan E. Synlett 2000; 319
  • 56 Schierle K, Vahle R, Steckhan E. Eur. J. Org. Chem. 1998; 509
  • 57 Yoshida J.-i, Suga S, Suzuki S, Kinomura N, Yamamoto A, Fujiwara K. J. Am. Chem. Soc. 1999; 121: 9546
  • 58 Sun H, Moeller KD. Org. Lett. 2003; 5: 3189
  • 59 Yoshida J.-i, Nishiwaki K. J. Chem. Soc., Dalton Trans. 1998; 2589
  • 60 Yoshida J, Maekawa T, Murata T, Matsunaga S, Isoe S. J. Am. Chem. Soc. 1990; 112: 1962
  • 61 Sugawara M, Mori K, Yoshida J.-I. Electrochim. Acta 1997; 42: 1995
  • 62 Yoshida J.-i, Sugawara M, Kise N. Tetrahedron Lett. 1996; 37: 3157
  • 63 Yoshida J.-i, Ashikari Y, Matsumoto K, Nokami T. J. Synth. Org. Chem. Jpn. 2013; 71: 1136
  • 64 Maruyama T, Mizuno Y, Shimizu I, Suga S, Yoshida J.-i. J. Am. Chem. Soc. 2007; 129: 1902
  • 65 Suga S, Nishida T, Yamada D, Nagaki A, Yoshida J.-i. J. Am. Chem. Soc. 2004; 126: 14338
  • 66 Suga S, Kageyama Y, Babu G, Itami K, Yoshida J.-i. Org. Lett. 2004; 6: 2709
  • 67 Nagaki A, Kawamura K, Suga S, Ando T, Sawamoto M, Yoshida J.-i. J. Am. Chem. Soc. 2004; 126: 14702
  • 68 Suga S, Okajima M, Yoshida J.-i. Tetrahedron Lett. 2001; 42: 2173
  • 69 Kam T.-S, Lim T.-M, Tan G.-H. J. Chem. Soc., Perkin Trans. 1 2001; 1594
  • 70 Mirabal-Gallardo Y, Piérola J, Shankaraiah N, Santos LS. Tetrahedron Lett. 2012; 53: 3672
  • 71 Shankaraiah N, da Silva WA, Andrade CK. Z, Santos LS. Tetrahedron Lett. 2008; 49: 4289
  • 72 Omura K, Swern D. Tetrahedron 1978; 34: 1651
  • 73 Griffith WP, Ley SV, Whitcombe GP, White AD. J. Chem. Soc., Chem. Commun. 1987; 1625
  • 74 Kabeshov MA, Musio B, Murray PR. D, Browne DL, Ley SV. Org. Lett. 2014; 16: 4618
  • 75 Vu VH, Louafi F, Girard N, Marion R, Roisnel T, Dorcet V, Hurvois J.-P. J. Org. Chem. 2014; 79: 3358
  • 76 Laurent P, Braekman J.-C, Daloze D. Eur. J. Org. Chem. 2000; 2057
  • 77 Louafi F, Moreau J, Shahane S, Golhen S, Roisnel T, Sinbandhit S, Hurvois J.-P. J. Org. Chem. 2011; 76: 9720
  • 78 Girard N, Hurvois J.-P, Moinet C, Toupet L. Eur. J. Org. Chem. 2005; 2269
  • 79 Barrett AG. M, Pilipauskas D. J. Org. Chem. 1991; 56: 2787
  • 80 Wang X, Li J, Saporito RA, Toyooka N. Tetrahedron 2013; 69: 10311
  • 81 Bauer R, Wendt H. Angew. Chem. Int. Ed. 1978; 17: 202
  • 82 Fuchigami T, Sato T, Nonaka T. J. Org. Chem. 1986; 51: 366
  • 83 Tokuda M, Fujita H, Miyamoto T, Suginome H. Tetrahedron 1993; 49: 2413
  • 84 Hou Z.-W, Mao Z.-Y, Zhao H.-B, Melcamu YY, Lu X, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2016; 55: 9168
  • 85 Ambrose JF. J. Electrochem. Soc. 1975; 122: 876
  • 86 Rosen BR, Werner EW, O’Brien AG, Baran PS. J. Am. Chem. Soc. 2014; 136: 5571
  • 87 Zhao J.-C, Yu S.-M, Qiu H.-B, Yao Z.-J. Tetrahedron 2014; 70: 3197
  • 88 Ward SE, Beswick P. Expert Opin. Drug Discovery. 2014; 9: 995
  • 89 Ogibin YN, Nikishin GI. Russ. Chem. Rev. 2001; 70: 543
  • 90 Niyazymbetov ME, Evans DH. Tetrahedron 1993; 49: 9627
  • 91 Mihelcic J, Moeller KD. J. Am. Chem. Soc. 2003; 125: 36
  • 92 Mihelcic J, Moeller KD. J. Am. Chem. Soc. 2004; 126: 9106
  • 93 Miller AK, Hughes CC, Kennedy-Smith JJ, Gradl SN, Trauner D. J. Am. Chem. Soc. 2006; 128: 17057
  • 94 Hughes CC, Miller AK, Trauner D. Org. Lett. 2005; 7: 3425
  • 95 Wu H, Moeller KD. Org. Lett. 2007; 9: 4599
  • 96 Sperry JB, Wright DL. Tetrahedron Lett. 2005; 46: 411
  • 97 Sumi T, Saitoh T, Natsui K, Yamamoto T, Atobe M, Einaga Y, Nishiyama S. Angew. Chem. Int. Ed. 2012; 51: 5443
  • 98 Miller LL, Stewart RF, Gillespie JP, Ramachandran V, So YH, Stermitz FR. J. Org. Chem. 1978; 43: 1580
  • 99 Miller LL, Stermitz FR, Falck JR. J. Am. Chem. Soc. 1973; 95: 2651
  • 100 Miller LL, Stermitz FR, Falck JR. J. Am. Chem. Soc. 1971; 93: 5941
  • 101 Makarova M, Endoma-Arias MA. A, Dela Paz HE, Simionescu R, Hudlicky T. J. Am. Chem. Soc. 2019; 141: 10883
  • 102 Lipp A, Selt M, Ferenc D, Schollmeyer D, Waldvogel SR, Opatz T. Org. Lett. 2019; 21: 1828
  • 103 Endoma-Arias MA. A, Makarova M, Dela Paz HE, Hudlicky T. Synthesis 2019; 51: 225
  • 104 Endoma-Arias MA. A, Dela Paz HE, Hudlicky T. Molecules 2019; 24: 3477
  • 105 Park KH, Chen DY. K. Chem. Commun. 2018; 54: 13018
  • 106 Kimishima A, Umihara H, Mizoguchi A, Yokoshima S, Fukuyama T. Org. Lett. 2014; 16: 6244
  • 107 Lipp A, Ferenc D, Gütz C, Geffe M, Vierengel N, Schollmeyer D, Schäfer HJ, Waldvogel SR, Opatz T. Angew. Chem. Int. Ed. 2018; 57: 11055
  • 108 Hou Z.-W, Yan H, Song J.-S, Xu H.-C. Chin. J. Chem. 2018; 36: 909
  • 109 Corey EJ, Pearce HL. J. Am. Chem. Soc. 1979; 101: 5841
  • 110 Mori N, Furuta A, Watanabe H. Tetrahedron 2016; 72: 8393
  • 111 Cao M.-H, Green NJ, Xu S.-Z. Org. Biomol. Chem. 2017; 15: 3105
  • 112 Heravi MM, Vavsari VF. RSC Adv. 2015; 5: 50890
  • 113 Juhl M, Tanner D. Chem. Soc. Rev. 2009; 38: 2983
  • 114 Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G. Angew. Chem. Int. Ed. 2002; 41: 1668
  • 115 Diels O, Alder K. Liebigs Ann. 1928; 460: 98
  • 116 Huisgen R. Angew. Chem. 1963; 75: 604
  • 117 Heravi MM, Zadsirjan V, Kouhestanian E, AlimadadiJani B. Chem. Rec. 2020; 20: 273
  • 118 Okada Y, Nishimoto A, Akaba R, Chiba K. J. Org. Chem. 2011; 76: 3470
  • 119 Peglow T, Blechert S, Steckhan E. Chem. Eur. J. 1998; 4: 107
  • 120 Chiba K, Tada M. J. Chem. Soc., Chem. Commun. 1994; 2485
  • 121 Mlcoch J, Steckhan E. Tetrahedron Lett. 1987; 28: 1081
  • 122 Nishiyama A, Eto H, Terada Y, Iguchi M, Yamamura S. Chem. Pharm. Bull. 1983; 31: 2820
  • 123 Walls F, Padilla J, Joseph-Nathan P, Giral F, Romo J. Tetrahedron Lett. 1965; 6: 1577
  • 124 Joseph-Nathan P, Mendoza V, García E. Tetrahedron 1977; 33: 1573
  • 125 Shizuri Y, Okuno Y, Shigemori H, Yamamura S. Tetrahedron Lett. 1987; 28: 6661
  • 126 Takakura H, Yamamura S. Tetrahedron Lett. 1998; 39: 3717
  • 127 Kishner NJ. J. Russ. Phys. Chem. Soc 1911; 43: 582
  • 128 Shizuri Y, Suyama K, Yamamura S. J. Chem. Soc., Chem. Commun. 1986; 63
  • 129 de Mayo P, Spencer EY, White RW. Can. J. Chem. 1961; 39: 1608
  • 130 Takakura H, Yamamura S. Tetrahedron Lett. 1999; 40: 299
  • 131 Takakura H, Toyoda K, Yamamura S. Tetrahedron Lett. 1996; 37: 4043
  • 132 Shizuri Y, Ohkubo M, Yamamura S. Tetrahedron Lett. 1989; 30: 3797
  • 133 Shizuri Y, Maki S, Ohkubo M, Yamamura S. Tetrahedron Lett. 1990; 31: 7167
  • 134 Romero KJ, Galliher MS, Raycroft MA. R, Chauvin J.-PR, Bosque I, Pratt DA, Stephenson CR. J. Angew. Chem. Int. Ed. 2018; 57: 17125
  • 135 Evans DA, Tanis SP, Hart DJ. J. Am. Chem. Soc. 1981; 103: 5813
  • 136 Saitoh T, Suzuki E, Takasugi A, Obata R, Ishikawa Y, Umezawa K, Nishiyama S. Bioorg. Med. Chem. Lett. 2009; 19: 5383
  • 137 Fuminao D, Taiga O, Takahisa O, Keiko H, Koji H, Shigeru N. Bull. Chem. Soc. Jpn. 2004; 77: 2257
  • 138 Doi F, Ogamino T, Sugai T, Nishiyama S. Tetrahedron Lett. 2003; 44: 4877
  • 139 Doi F, Ogamino T, Sugai T, Nishiyama S. Synlett 2003; 411
  • 140 Kotani E, Kitazawa M, Tobinaga S. Tetrahedron 1974; 30: 3027
  • 141 Kotani E, Takeuchi N, Tobinaga S. J. Chem. Soc., Chem. Commun. 1973; 550
  • 142 Kotani E, Tobinaga S. Tetrahedron Lett. 1973; 14: 4759
  • 143 Shizuri Y, Nakamura K, Yamamura S, Ohba S, Yamashita H. Saito Y. 1986; 27: 727
  • 144 Yamamura S, Shizuri Y, Shigemori H, Okuno Y, Ohkubo M. Tetrahedron 1991; 47: 635
  • 145 Shizuri Y, Shigemori H, Okuno Y, Yamamura S. Chem. Lett. 1986; 15: 2097
  • 146 Moore JC, Davies ES, Walsh DA, Sharma P, Moses JE. Chem. Commun. 2014; 50: 12523
  • 147 Nigenda SE. J. Electrochem. Soc. 1987; 134: 2465
  • 148 Lim HN, Parker KA. J. Org. Chem. 2014; 79: 919
  • 149 Mattay J, Trampe G, Runsink J. Chem. Ber. 1988; 121: 1991
  • 150 Chupakhin E, Babich O, Prosekov A, Asyakina L, Krasavin M. Molecules 2019; 24: 4165
  • 151 Zheng Y.-J, Tice CM. Expert Opin. Drug Discovery 2016; 11: 831
  • 152 Zheng Y, Tice CM, Singh SB. Bioorg. Med. Chem. Lett. 2014; 24: 3673
  • 153 Swenton JS, Carpenter K, Chen Y, Kerns ML, Morrow GW. J. Org. Chem. 1993; 58: 3308
  • 154 Cheng J.-F, Nishiyama S, Yamamura S. Chem. Lett. 1990; 19: 1591
  • 155 Morrow GW, Swenton JS. Tetrahedron Lett. 1987; 28: 5445
  • 156 Tao XL, Cheng J.-F, Nishiyama S, Yamamura S. Tetrahedron 1994; 50: 2017
  • 157 Nishiyama S, Cheng J.-F, Tao XL, Yamamura S. Tetrahedron Lett. 1991; 32: 4151
  • 158 Ogamino T, Obata R, Nishiyama S. Tetrahedron Lett. 2006; 47: 727
  • 159 Ogamino T, Nishiyama S. Tetrahedron 2003; 59: 9419
  • 160 Ogamino T, Ohnishi S, Ishikawa Y, Sugai T, Obata R, Nishiyama S. Sci. Technol. Adv. Mater. 2006; 7: 175
  • 161 Evans DA. Aldrichimica Acta 1982; 15: 23
  • 162 Honjo E, Kutsumura N, Ishikawa Y, Nishiyama S. Tetrahedron 2008; 64: 9495
  • 163 Bischler A, Napieralski B. Ber. Dtsch. Chem. Ges. 1893; 26: 1903
  • 164 Tanabe T, Doi F, Ogamino T, Nishiyama S. Tetrahedron Lett. 2004; 45: 3477
  • 165 Uno K, Tanabe T, Nishiyama S. ECS Trans. 2010; 25: 91
  • 166 Xu H.-C, Brandt JD, Moeller KD. Tetrahedron Lett. 2008; 49: 3868
  • 167 Tepe JJ, Williams RM. J. Am. Chem. Soc. 1999; 121: 2951
  • 168 Liu B, Duan S, Sutterer AC, Moeller KD. J. Am. Chem. Soc. 2002; 124: 10101
  • 169 Liu B, Moeller KD. Tetrahedron Lett. 2001; 42: 7163
  • 170 Duan S, Moeller KD. Org. Lett. 2001; 3: 2685
  • 171 Becking L, Schäfer HJ. Tetrahedron Lett. 1988; 29: 2801
  • 172 Huhtasaari M, Schäfer HJ, Becking L. Angew. Chem. Int. Ed. 1984; 23: 980
  • 173 Samuelsson B, Goldyne M, Granström E, Hamberg M, Hammarström S, Malmsten C. Annu. Rev. Biochem. 1978; 47: 997
  • 174 Ma X, Dewez DF, Du L, Luo X, Markó IE, Lam K. J. Org. Chem. 2018; 83: 12044
  • 175 Park YS, Little RD. J. Org. Chem. 2008; 73: 6807
  • 176 Meerwein H, van Emster K. Ber. Dtsch. Chem. Ges. 1922; 55: 2500
  • 177 Meerwein H. Liebigs Ann. 1914; 405: 129
  • 178 Wagner G. J. Russ. Phys. Chem. Soc. 1899; 31: 690
  • 179 Merrifield RB. J. Am. Chem. Soc. 1963; 85: 2149
  • 180 Kitada S, Takahashi M, Yamaguchi Y, Okada Y, Chiba K. Org. Lett. 2012; 14: 5960