Synthesis 2020; 52(19): 2833-2840
DOI: 10.1055/s-0040-1707166
paper
© Georg Thieme Verlag Stuttgart · New York

Stereoselective Rhodium-Catalyzed Isomerization of Stereoisomeric Mixtures of Arylalkenes

Hongxuan Yang
,
Wenke Dong
,
Wencan Wang
,
Tao Li
,
Wanxiang Zhao
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China   Email: zhaowanxiang@hnu.edu.cn
› Author Affiliations
Financial supports from the National Natural Science Foundation of China (Grant No. 21702056, 21971059 and 21901068), the National Program for Thousand Young Talents of China, and the Fundamental Research Funds for the Central Universities are greatly appreciated.
Further Information

Publication History

Received: 29 May 2020

Accepted after revision: 02 June 2020

Publication Date:
06 July 2020 (online)


Abstract

A new efficient method for the synthesis of a high ratio of E-alkenes from E/Z mixtures of alkenes with B2pin2 in the presence of a rhodium catalyst is described. This reaction features mild reaction conditions, broad functional group tolerance, and highly great application potential.

Supporting Information

 
  • References

    • 1a Larock RC. Comprehensive Organic Transformations: A Guide to Functional Group Preparations, 2nd ed. VCH; New York: 1999
    • 1b Kricheldorf HR, Nuyken O, Swift G. In Handbook of Polymer Synthesis, 2nd ed. Marcel Dekker; New York: 2005
    • 1c Takeda T. Modern Carbonyl Olefination . Wiley-VCH; Weinheim: 2004
    • 1d Zhuo C, Fürstner A. J. Am. Chem. Soc. 2018; 140: 10514
    • 2a Williams JM. J. Preparation of Alkenes: A Practical Approach . Oxford University Press; Oxford: 1996
    • 2b Byrne PA, Gilheany DG. Chem. Soc. Rev. 2013; 42: 6670
    • 2c Grubbs RH, Wenzel AG. Handbook of Olefin Metathesis, 2nd ed. Wiley-VCH; Weinheim: 2015
    • 2d Hoveyda AH, Zhugralin AR. Nature 2007; 450: 243
    • 3a Bosanac T, Yang J, Wilcox CS. Angew. Chem. Int. Ed. 2001; 40: 1875
    • 3b Ali MA, Tsuada Y. Chem. Pharm. Bull. 1992; 40: 2842
    • 3c Kapat A, Sperger T, Guven S, Schoenebeck FE. Science 2019; 363: 391
    • 4a Dugave C, Demange L. Chem. Rev. 2003; 103: 2475
    • 4b Sairre MI, Araújo LF. N, Silva R, Donate PM, Silvério CA, Okano LT. J. Braz. Chem. Soc. 2008; 19: 194
    • 4c Vantomme G, Lehn JM. Chem. Eur. J. 2014; 20: 16188
    • 4d Xu JJ, Sung R, Sung K. J. Phys. Chem. A 2019; 123: 4708
    • 4e Faßbender SI, Molloy JJ, Mück-Lichtenfeld C, Gilmour R. Angew. Chem. Int. Ed. 2019; 58: 18619
    • 4f Livingstone K, Tenberge M, Pape F, Daniliuc CG, Jamieson C, Gilmour R. Org. Lett. 2019; 21: 9677
    • 4g Singh A, Fennell CJ, Weaver JD. Chem. Sci. 2016; 7: 6796
    • 4h Singh K, Staig SJ, Weaver JD. J. Am. Chem. Soc. 2014; 136: 5275
    • 5a Gibson TW, Strassburger P. J. Org. Chem. 1976; 41: 791
    • 5b Hepperle SS, Li Q, East AL. L. J. Phys. Chem. A 2005; 109: 10975
    • 5c Hassam M, Taher A, Arnott GE, Green IR, Otterlo WA. L. Chem. Rev. 2015; 115: 5462

      For selected examples, see:
    • 6a McGowan KP, Abboud KA, Veige AS. Organometallics 2011; 30: 4949
    • 6b Jennerjahn R, Jackstell R, Piras I, Franke R, Jiao H, Bauer M, Beller M. ChemSusChem 2012; 5: 734
    • 6c Mayer M, Welther A, Jacobi von Wangelin A. ChemCatChem 2011; 3: 1567
    • 6d Gaydou M, Moragas T, Juliá-Hernández F, Martin R. J. Am. Chem. Soc. 2017; 139: 12161
    • 6e Chen C, Dugan TR, Brennessel WW, Weix DJ, Holland PL. J. Am. Chem. Soc. 2014; 136: 945
    • 6f Liu H, Xu M, Cai C, Cheng J, Gui Y, Xia Y. Org. Lett. 2020; 22: 1193
    • 6g Becica J, Glaze OD, Wozniak DI, Dobereiner GE. Organometallics 2018; 37: 482
    • 6h Naota T, Takaya H, Murahashi SI. Chem. Rev. 1998; 98: 2599
    • 6i Wakamatsu H, Nishida M, Adachi N, Mori M. J. Org. Chem. 2000; 65: 3966
    • 6j Ohlmann DM, Tschauder N, Stockis JP, Gooßen K, Dierker M, Gooßen LJ. J. Am. Chem. Soc. 2012; 134: 13716
    • 6k Clark JR, Griffiths JR, Diver ST. J. Am. Chem. Soc. 2013; 135: 3327
    • 6l Larsen CR, Erdogan G, Grotjahn DB. J. Am. Chem. Soc. 2014; 136: 1226
    • 6m Trost BM, Cregg JJ, Quach N. J. Am. Chem. Soc. 2017; 139: 5133
    • 6n Paulson ER, Moore CE, Rheingold AL, Pullman DP, Sindewald RW, Cooksy AL, Grotjahn DB. ACS Catal. 2019; 9: 7217
    • 6o Larsen CR, Grotjahn DB. J. Am. Chem. Soc. 2012; 134: 10357
    • 6p Tani K, Yamagata T, Akutagawa S, Kumobayashi H, Taketomi T, Takaya H, Miyashita A, Ryoji N, Otsuka S. J. Am. Chem. Soc. 1984; 106: 5208
    • 6q Alphonse FA, Yudin AK. J. Am. Chem. Soc. 2006; 128: 11754
    • 6r Kim IS, Dong GR, Jung YH. J. Org. Chem. 2007; 72: 5424
    • 6s Yu J, Gaunt MJ, Spencer JB. J. Org. Chem. 2002; 67: 4627
    • 6t Gauthier D, Lindhardt AT, Olsen EP. K, Overgaard J, Skrydstrup T. J. Am. Chem. Soc. 2010; 132: 7998
    • 6u Tan EH. P, Lloyd-Jones GC, Harvey JN, Lennox AJ. J, Mills BM. Angew. Chem. Int. Ed. 2011; 50: 9602
    • 6v Biswas S, Huang Z, Choliy Y, Wang DY, Brookhart M, Jespersen KK, Goldman AS. J. Am. Chem. Soc. 2012; 134: 13276
    • 6w Jia X, Zhang L, Qin C, Leng X, Huang Z. Chem. Commun. 2014; 50: 11056
    • 6x Wang Y, Qin C, Jia X, Leng X, Huang Z. Angew. Chem. Int. Ed. 2017; 56: 1614
    • 6y Hu L, Wu Z, Huang G. Org. Lett. 2018; 20: 5410
    • 6z Romano C, Mazet C. J. Am. Chem. Soc. 2018; 140: 4743
    • 7a Teltewskoi M, Panetier JA, Macgregor SA, Braun T. Angew. Chem. Int. Ed. 2010; 49: 3947
    • 7b Esteruelas MA, Oliván M, Vélez A. J. Am. Chem. Soc. 2015; 137: 12321
    • 7c Curto SG, Esteruelas MA, Oliván M, Oñate E. Organometallics 2019; 38: 2062
    • 8a Jang MS, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher WW, Fong HH. S, Farnsworth NR, Kingborn AD, Mehta RG, Moon RC, Pezzuto JM. Science 1997; 275: 218
    • 8b Medina PD, Casper R, Savouret JF, Poirot M. J. Med. Chem. 2005; 48: 287
    • 9a Brown JM, Lloyd-Jones GC. J. Chem. Soc., Chem. Commun. 1992; 710
    • 9b Murata M, Watanabe S, Masuda Y. Tetrahedron Lett. 1999; 40: 2585
    • 9c Murata M, Kawakita K, Asana T, Watanabe S, Masuda Y. Bull. Chem. Soc. Jpn. 2002; 75: 825
    • 9d Coapes RB, Souza FE. S, Thomas RL, Hall JJ, Marder TB. Chem. Commun. 2003; 614
    • 9e Mkhalid IA. I, Coapes RB, Edes SN, Coventry DN, Souza FE. S, Thomas RL, Hall JJ, Bi S.-W, Lin Z, Marder TB. Dalton Trans. 2008; 1055
    • 9f Kondoh A, Jamison TF. Chem. Commun. 2010; 46: 907
    • 9g Iwadate N, Suginome M. Chem. Lett. 2010; 39: 558
    • 9h Morimoto M, Miura T, Murakami M. Angew. Chem. Int. Ed. 2015; 54: 12659
    • 9i Kikuchi T, Takagi J, Ishiyama T, Miyaura N. Chem. Lett. 2008; 37: 664
  • 10 Giordano G, Crabtree RH, Heintz RM, Forster D, Morris DE. Inorg. Synth. 1990; 28: 88
  • 11 Biswas N, Das K, Sardar B, Srimani D. Dalton Trans. 2019; 48: 6501
  • 12 Leonie B, Chengxin P, Richard JK. T. Synlett 2002; 215
  • 13 Shin JH, Seong EY, Mun HJ, Jang YJ, Kang EJ. Org. Lett. 2018; 20: 5872
  • 14 Hullaert J, Winne JM. Angew. Chem. Int. Ed. 2016; 55: 13254
  • 15 Hachem A, Le Floc’h Y, Gree R, Rolland Y, Simonet S, Verbeuren T. Tetrahedron Lett. 2002; 43: 5217
  • 16 Mäsing F, Nüsse H, Klingauf J, Studer A. Org. Lett. 2017; 19: 2658
  • 17 Pospíšil J. Tetrahedron Lett. 2011; 52: 2348
  • 18 Niyomchon S, Oppedisano A, Aillard P, Maulide N. Nat. Commun. 2017; 8: 1091
  • 19 Le Bigot Y, Delmas M, Gaset A. Tetrahedron 1988; 44: 1057
  • 20 Qian X, Auffrant A, Felouat A, Gosmini C. Angew. Chem. Int. Ed. 2011; 50: 10402
  • 21 Li Y, Ge L, Qian B, Babu KR, Bao H. Tetrahedron Lett. 2016; 57: 5677
  • 22 Zhu D, Lv L, Li C.-C, Ung S, Gao J, Li C.-J. Angew. Chem. Int. Ed. 2018; 57: 16520
  • 23 Wissing M, Niehues M, Ravoo BJ, Studer A. Eur. J. Org. Chem. 2018; 3403
  • 24 Matsushima T, Kobayashi S, Watanabe S. J. Org. Chem. 2016; 81: 7799
  • 25 Mamidala R, Pandey VK, Rit A. Chem. Commun. 2019; 55: 989
  • 26 Ismail T, Shafi S, Srinivas J, Sarkar D, Qurishi Y, Khazir J, Alam MS, Kumar HM. S. Bioorg. Chem. 2016; 64: 97
  • 27 Chiu C, Chiu H, Lee D, Lu T. RSC Adv. 2018; 8: 26407
  • 28 Giraud A, Provot O, Hamzé A, Brion J, Alami M. Tetrahedron Lett. 2008; 49: 1107
  • 29 Yuan W, Ma S. Org. Biomol. Chem. 2012; 10: 7266