Synthesis 2020; 52(23): 3530-3548
DOI: 10.1055/s-0040-1707208
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in the Synthesis and Applications of 2-Arylbenzothiazoles

Fuqiang Gan
a   Department of Obstetrics and Gynecology, Jiangxi Provincial People’s Hospital, 92 Aiguo Road, Nanchang, Jiangxi 330006, P. R. of China   Email: luopuying1979@126.com
,
Puying Luo
a   Department of Obstetrics and Gynecology, Jiangxi Provincial People’s Hospital, 92 Aiguo Road, Nanchang, Jiangxi 330006, P. R. of China   Email: luopuying1979@126.com
,
Junyue Lin
b   Key Laboratory of Functional Small Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, P. R. of China
c   College of Chemistry & Chemical Engineering, Jinganshan University, Xueyuan Road, Ji’an, Jiangxi 343009, P. R. of China
,
Qiuping Ding
b   Key Laboratory of Functional Small Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, P. R. of China
› Author Affiliations
Financial support from the National Natural Science Foundation of China (21662017, 21961016), and Jiangxi Health and Family Planning Commission Project (20161015) is gratefully acknowledged.
Further Information

Publication History

Received: 19 May 2020

Accepted after revision: 15 June 2020

Publication Date:
05 August 2020 (online)


Abstract

This review firstly covers the applications of 2-arylbenzothiazoles as amyloid imaging agents, antitumor agents, and organic luminescent materials. Then we review the recent advances in the synthesis of 2-arylbenzothiazole derivatives. On the one hand, we introduce the approaches for construction of the 2-arylbenzothiazole core, including the following categories: (i) classic condensation of 2-aminothiophenols, (ii) direct arylation of benzothiazoles, (iii) intramolecular cyclization of thiobenzanilides, and (iv) tandem cyclization of anilines/ nitroarenes­ with elemental sulfur or sulfides. On the other hand, the transition-metal-catalyzed direct C–H functionalizations of 2-aryl­benzothiazoles are also involved in this review.

1 Introduction

2 Applications of 2-Arylbenzothiazoles

3 Construction of the 2-Arylbenzothiazole Core

4 Synthesis 2-Arylbenzothiazoles via Direct C–H Functionalization

5 Conclusion

 
  • References

    • 1a Weekes AA, Westwell AD. Cur. Med. Chem. 2009; 16: 2430
    • 1b Sharma PC, Sinhmar A, Sharma A, Rajak H, Pathak DP. J. Enzyme Inhib. Med. Chem. 2013; 28: 240
    • 1c Noël S, Cadet S, Gras E, Hureau C. Chem. Soc. Rev. 2013; 42: 7747
    • 1d Liu X, Dong Z.-B. Eur. J. Org. Chem. 2020; 408
    • 2a Viles JH. Coord. Chem. Rev. 2012; 256: 2271
    • 2b Valensin D, Gabbiani C, Messori L. Coord. Chem. Rev. 2012; 19–20: 2357
  • 3 See: Biancalana M, Koide S. Biochim. Biophys. Acta 2010; 1804: 1405 ; and references therein
  • 4 Mathis CA, Wang Y, Holt DP, Huang G.-F, Debnath ML, Klunk WE. J. Med. Chem. 2003; 46: 2740
  • 5 Cui M, Ono M, Kimura H, Ueda M, Nakamoto Y, Togashi K, Okamoto Y, Ihara M, Takahashi R, Liu B, Saji H. J. Med. Chem. 2012; 55: 9136
  • 6 Pan J, Mason NS, Debnath ML, Mathis CA, Klunk WE, Lin KS. Bioorg. Med. Chem. Lett. 2013; 23: 1720
  • 7 Jia J, Cui M, Dai J, Wang X, Ding Y.-S, Jia H, Liu B. Med. Chem. Commun. 2014; 5: 153
  • 8 Jia J, Zhou K, Dai J, Liu B, Cui M. Eur. J. Med. Chem. 2016; 124: 763
  • 9 Zhang X, Yu P, Yang Y, Hou Y, Peng C, Liang Z, Lu J, Chen B, Dai J, Liu B, Cui M. Bioconjugate Chem. 2016; 27: 2493
  • 10 Shi D.-F, Bradshaw TD, Wrigley S, Mccall CJ, Lelieveld P, Fichtner I, Stevens MF. G. J. Med. Chem. 1996; 39: 3375
  • 11 Shi D.-F, Bradshaw TD, Chua MS, Westwell AD, Stevens MF. G. Bioorg. Med. Chem. Lett. 2001; 11: 1093
    • 12a Hutchinson I, Chua MS, Browne HL, Trapani V, Bradshaw TD, Westwell AD, Stevens MF. G. J. Med. Chem. 2001; 44: 1446
    • 12b Leong CO, Gaskell M, Martin EA, Heydon RT, Farmer PB, Bibby MC, Cooper PA, Double JA, Bradshaw TD, Stevens MF. G. Br. J. Cancer 2003; 88: 470
  • 13 Hutchinson I, Jennings SA, Vishnuvajjala BR, Westwell AD, Stevens MF. J. Med. Chem. 2002; 45: 744
  • 14 Hutchinson I, Bradshaw TD, Matthews CS, Stevens MF, Westwell AD. Bioorg. Med. Chem. Lett. 2003; 13: 471
  • 15 Choi SJ, Park HJ, Lee SK, Kim SW, Han G, Choo H.-Y. Bioorg. Med. Chem. 2006; 14: 1229
  • 16 Mortimer CG, Wells G, Crochard JP, Stone EL, Bradshaw TD, Stevens MF, Westwell AD. J. Med. Chem. 2006; 49: 179
  • 17 Aiello S, Wells G, Stone EL, Kadri H, Bazzi R, Bell DR, Stevens MF. G, Matthews CS, Bradshaw TD, Westwell AD. J. Med. Chem. 2008; 51: 5135
  • 18 Racané L, Kralj M, Suman L, Stojkovic R, Tralic-Kulenovic V, Karminski-Zamola G. Bioorg. Med. Chem. 2010; 18: 1038
  • 19 Gupta SD, Moorthy NS. H .N, Sanyal U. Int. J. Pharm. Pharm. Sci. 2010; 2 (03) 57
  • 20 Katkova MA, Balashova TV, Ilichev VA, Konev AN, Isachenkov NA, Fukin GK, Ketkov SY, Bochkarev MN. Inorg. Chem. 2010; 49: 5094
  • 21 Santra M, Roy B, Ahn KH. Org. Lett. 2011; 13: 3422
  • 22 Liu L, Tan C, Fan R, Wang Z, Du H, Xu K, Tan J. Org. Biomol. Chem. 2019; 17: 252
  • 23 Pesyan NN, Batmani H, Havasi F. Polyhedron 2019; 158: 248
  • 24 Bahrami K, Bakhtiarian M. ChemistrySelect 2018; 3: 10875
  • 25 Fan L.-Y, Shang Y.-H, Li X.-X, Hua W.-J. Chin. Chem. Lett. 2015; 26: 77
  • 26 Banerjee S, Payra S, Saha A, Sereda G. Tetrahedron Lett. 2014; 55: 5515
  • 27 Wang J, Zhang XZ, Chen SY, Yu XQ. Tetrahedron 2014; 70: 245
  • 28 Hua M, Wang CQ, Liu QX, Chen DY, Fu H, Zhou HF. Heterocycles 2018; 96: 1226
  • 29 Khemnar AB, Bhanage BM. RSC Adv. 2014; 4: 8939
  • 30 Ghashang M. Res. Chem. Intermed. 2014; 40: 1669
  • 31 Srinivasulu R, Kumar KR, Satyanarayana PV. V, Babu BH. J. Appl. Chem. 2014; 2: 5
  • 32 Singh Digwal C, Yadav U, Sakla AP, Sri Ramya PV, Aaghaz S, Kamal A. Tetrahedron Lett. 2016; 57: 4012
  • 33 Naeimi H, Heidarnezhad A. J. Sulfur Chem. 2014; 35: 493
  • 34 Shaikh KA, Chaudhar UN. Org. Commun. 2017; 10: 288
  • 35 Zeng H, Luo P, Luo M, Ding H, Ding Q. Tetrahedron 2019; 75: 130472
  • 36 Liao Y, Qi H, Chen S, Jiang P, Zhou W, Deng G.-J. Org. Lett. 2012; 14: 6004
  • 37 Das K, Mondal A, Srimani D. Chem. Commun. 2018; 54: 10582
  • 38 Sun Y, Jiang H, Wu W, Zeng W, Wu X. Org. Lett. 2013; 15: 1598
    • 39a Pivsa-Art S, Satoh T, Kawamura Y, Miura M, Nomura M. Bull. Chem. Soc. Jpn. 1998; 71: 467
    • 39b Huang J, Chan J, Chen Y, Borths CJ, Baucom KD, Larsen RD, Faul MM. J. Am. Chem. Soc. 2010; 132: 3674
    • 39c Tamba S, Okubo Y, Tanaka S, Monguchi D, Mori A. J. Org. Chem. 2010; 75: 6998
  • 40 Do H.-Q, Daugulis O. J. Am. Chem. Soc. 2007; 129: 12404
  • 41 Lewis JC, Berman AM, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2008; 130: 2493
  • 42 Canivet J, Yamaguchi J, Ban I, Itami K. Org. Lett. 2009; 11: 1733
  • 43 Yang F, Koeller J, Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 4759
  • 44 Ranjit S, Liu X. Chem. Eur. J. 2011; 17: 1105
    • 45a Muto K, Yamaguchi J, Itami K. J. Am. Chem. Soc. 2012; 134: 169
    • 45b Matsushita K, Takise R, Hisada T, Suzuki S, Isshiki R, Itami K, Muto K, Yamaguchi J. Chem. Asian J. 2018; 13: 2393
  • 46 Xie K, Yang Z, Zhou X, Li X, Wang S, Tan Z, An X, Guo C.-C. Org. Lett. 2010; 12: 1564
  • 47 Song Q, Feng Q, Zhou M. Org. Lett. 2013; 15: 5990
  • 48 Evindar G, Batey RA. J. Org. Chem. 2006; 71: 1802
    • 49a Inamoto K, Hasegawa C, Hiroya K, Doi T. Org. Lett. 2008; 10: 5147
    • 49b Inamoto K, Hasegawa C, Kawasaki J, Hiroya K, Doi T. Adv. Synth. Catal. 2010; 352: 2643
  • 50 Inamoto K, Nozawa K, Kondo Y. Synlett 2012; 23: 1678
  • 51 Wang H, Wang L, Shang J, Li X, Wang H, Gui J, Lei A. Chem. Commun. 2012; 48: 76
  • 52 Rey V, Soria-Castro SM, Argüello JE, Peñéñory AB. Tetrahedron Lett. 2009; 50: 4720
  • 53 Cheng Y, Yang J, Qu Y, Li P. Org. Lett. 2012; 14: 98
  • 54 Zhang G, Liu C, Yi H, Meng Q, Bian C, Chen H, Jian J.-X, Wu L.-Z, Lei A. J. Am. Chem. Soc. 2015; 137: 9273
  • 55 Xu Z.-M, Li H.-X, Young DJ, Zhu D.-L, Li H.-Y, Lang J.-P. Org. Lett. 2019; 21: 237
  • 56 Zhang LF, Ni ZH, Li DY, Qin ZH, Wei XY. Chin. Chem. Lett. 2012; 23: 281
  • 57 Deng H, Li Z, Ke F, Zhou X. Chem. Eur. J. 2012; 18: 4840
  • 58 Nguyen TB, Ermolenko L, Al-Mourabit A. Org. Lett. 2013; 15: 4218
  • 59 Nguyen TB, Ermolenko L, Retailleau P, Al-Mourabit A. Angew. Chem. Int. Ed. 2014; 53: 13808
  • 60 Guntreddi T, Vanjari R, Singh KN. Org. Lett. 2015; 17: 976
  • 61 Nguyen LA, Ngo QA, Retailleau P, Nguyen TB. Green Chem. 2017; 19: 4289
    • 62a Chen X, Jiang J, Xiao F, Huang H, Deng G.-J. Org. Lett. 2017; 19: 4576
    • 62b Xu Z, Huang H, Chen H, Deng G.-J. Org. Chem. Front. 2019; 6: 3060
  • 63 Xing Q, Ma Y, Xie H, Xiao F, Zhang F, Deng G.-J. J. Org. Chem. 2019; 84: 1238
  • 64 Itoh T, Mase T. Org. Lett. 2007; 9: 3687
  • 65 Prasad DJ. C, Sekar G. Org. Biomol. Chem. 2013; 11: 1659
  • 66 Ma D, Xie S, Xue P, Zhang X, Dong J, Jiang Y. Angew. Chem. Int. Ed. 2009; 48: 4222
  • 67 Park N, Heo Y, Kumar MR, Kim Y, Song KH, Lee S. Eur. J. Org. Chem. 2012; 1984
  • 68 Zhang X, Zeng W, Yang Y, Huang H, Liang Y. Org. Lett. 2014; 16: 876
  • 69 Dey A, Hajra A. Org. Lett. 2019; 21: 1686
  • 70 Yu W, Wu W, Jiang H. Chin. J. Chem. 2019; 37: 1158
  • 71 Banerjee A, Bera A, Guin S, Rout SK, Patel BK. Tetrahedron 2013; 69: 2175
  • 72 Seth K, Nautiyal M, Purohit P, Parikh N, Chakraborti AK. Chem. Commun. 2015; 51: 191
  • 73 Shah SS, Paul A, Bera M, Venkatesh Y, Singh ND. P. Org. Lett. 2018; 20: 5533
  • 74 Ping Y, Chen Z, Ding Q, Peng Y. Synthesis 2017; 49: 2015
  • 75 Choi M, Park J, Mishra NK, Lee S.-Y, Kim JH, Jeong KM, Lee J, Jung YH, Kim IS. Tetrahedron Lett. 2015; 56: 4678
  • 76 Ding Q, Ji H, Wang D, Lin Y, Yu W, Peng Y. J. Organomet. Chem. 2012; 711: 62
  • 77 Ding Q, Ji H, Nie Z, Yang Q, Peng Y. J. Organomet. Chem. 2013; 739: 33
    • 78a Banerjee A, Santra SK, Guin S, Rout SK, Patel BK. Eur. J. Org. Chem. 2013; 1367
    • 78b Wang J, Nie Z, Li Y, Tan S, Jiang J, Jiang P, Ding Q. J. Chem. Res. 2013; 263
  • 79 Zheng Y, Song W.-B, Zhang S.-W, Xuan L.-J. Tetrahedron 2015; 71: 1574
  • 80 Ding Q, Ye C, Pu S, Cao B. Tetrahedron 2014; 70: 409
  • 81 Ding Q, Zhou X, Pu S, Cao B. Tetrahedron 2015; 71: 2376
  • 82 Zhou X, Luo P, Long L, Ouyang M, Sang X, Ding Q. Tetrahedron 2014; 70: 6742
  • 83 Luo P, Ding Q, Ping Y, Hu J. Org. Biomol. Chem. 2016; 14: 2924
  • 84 Ping Y, Ding Q, Chen Z, Peng Y. J. Organomet. Chem. 2016; 815–816: 59
  • 85 Ping Y, Chen Z, Ding Q, Zheng Q, Lin Y, Peng Y. Tetrahedron 2017; 73: 594
  • 86 Qiao H.-J, Yang F, Wang S.-W, Leng Y.-T, Wu Y.-J. Tetrahedron 2015; 71: 9258
  • 87 Liu D, Luo P, Ge J, Jiang Z, Peng Y, Ding Q. J. Org. Chem. 2019; 84: 12784
  • 88 Liu D, Ding Q, Fu Y, Song Z, Peng Y. Org. Lett. 2019; 21: 2523