Synlett 2021; 32(06): 573-581
DOI: 10.1055/s-0040-1707240
account
© Georg Thieme Verlag Stuttgart · New York

Strategy for the Use of Molecular Oxygen in Organic Synthesis

Partial support from the Japan Society for the Promotion of Science (JSPS KAKENHI; Grant-in-Aid for Scientific Research (C), No. 19K06972) is gratefully acknowledged.
Further Information

Publication History

Received: 02 June 2020

Accepted after revision: 10 July 2020

Publication Date:
24 August 2020 (online)


Abstract

Our recent studies on the development of new synthetic methods using molecular oxygen (O2), which is an environmentally friendly oxidant, are described in this Account. The character of O2 as an electron acceptor can be utilized for activation of simple organic molecules to generate reactive species. Such reactive species are applicable to advanced molecular transformation, such as C–C and C–X (X = heteroatom) bond formation, functionalization of inactivated C(sp3)–H, and catalytic Mitsunobu reaction, by avoiding direct quenching of the reactive species by O2.

1 Introduction

2 Reactions with Iron Catalysts and Oxygen

2.1 Reactions Using Redox Hydration of Alkenes

2.2 Reactions Using Oxidation of Heteroatoms

3 Reactions with tert-Butyl Nitrite and Oxygen

4 Conclusion

 
  • References


    • Selected reviews on reactions with O2:
    • 1a Gligorich KM, Sigman MS. Chem. Commun. 2009; 3854
    • 1b Wendlandt AE, Suess AM, Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062
    • 1c Campbell AN, Stahl SS. Acc. Chem. Res. 2012; 45: 851
    • 1d Shi Z, Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3381
    • 1e Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234
    • 1f Gulzar N, Schweitzer-Chaput B, Klussmann M. Catal. Sci. Technol. 2014; 4: 2778
    • 1g Urgoitia G, SanMartin R, Herrero MT, Domínguez E. ACS Catal. 2017; 7: 3050
    • 1h Bian C, Singh AK, Niu L, Yi H, Lei A. Asian J. Org. Chem. 2017; 6: 386
  • 2 Voet D, Voet JG. Biochemistry, 4th ed. John Wiley & Sons; Hoboken: 2011. Chap. 22, 823
  • 3 Weber M, Daldrup J.-BG, Weber M. Noncatalyzed Radical Chain Oxidation: Cumene Hydroperoxide. In Liquid Phase Aerobic Oxidation Catalysis: Industrial Applications and Academic Perspectives. Wiley-VCH; Weinheim: 2016: 15
  • 4 Que LJr, Tolman WB. Nature 2008; 455: 333
    • 6a Sorokin AB. Chem. Rev. 2013; 113: 8152
    • 6b Zettler MW, Taniguchi T. Iron(II) Phthalocyanine . In Encyclopedia of Reagents for Organic Synthesis . John Wiley & Sons, Ltd; Weinheim: 2017. DOI: 10.1002/047084289X.ri065.pub2
  • 7 Okamoto T, Oka S. J. Org. Chem. 1984; 49: 1589
  • 8 Jiang H, Lai W, Chen H. ACS Catal. 2019; 9: 6080
    • 9a Leggans EK, Barker TJ, Duncan KK, Boger DL. Org. Lett. 2012; 14: 1428
    • 9b Crossley SW. M, Obradors C, Martinez RM, Shenvi RA. Chem. Rev. 2016; 116: 8912
    • 9c Shenvi RA, Matos JL. M, Green SA. Org. React. 2019; 100: 383
  • 10 Taniguchi T, Goto N, Nishibata A, Ishibashi H. Org. Lett. 2010; 12: 112
  • 11 Hashimoto T, Hirose D, Taniguchi T. Angew. Chem. Int. Ed. 2014; 53: 2730
    • 13a Rietjens IM. C. M, Osman AM, Veeger C, Zakharieva O, Antony J, Grodzicki M, Trautwein AX. J. Biol. Inorg. Chem. 1996; 1: 372
    • 13b Green MT. J. Am. Chem. Soc. 1998; 120: 10772
    • 14a Corey EJ, Gross AW. J. Org. Chem. 1985; 50: 5391
    • 14b Varea T, González-Núñez ME, Rodrigo-Chiner J, Asensio G. Tetrahedron Lett. 1989; 30: 4709
    • 14c Myers AG, Movassaghi M, Zheng B. Tetrahedron 1997; 38: 6569
    • 14d Demir AS, Reis Ö, Özgül-Karaaslan E. J. Chem. Soc., Perkin Trans. 1 2001; 3042
    • 14e Braslau R, Anderson MO, Rivera F, Jimenez A, Haddad T, Axon JR. Tetrahedron 2002; 58: 5513
    • 14f Bath S, Laso NM, Lopwz-Ruiz H, Quiclet-Sire B, Zard SZ. Chem. Commun. 2003; 204
    • 15a Bachi MD, Bosch E. Tetrahedron Lett. 1986; 27: 641
    • 15b Singh AK, Bakshi PK, Corey EJ. J. Am. Chem. Soc. 1987; 109: 6187
    • 15c Coppa F, Fontana F, Lazzarini E, Minisci F, Pianese G, Zhao L. Tetrahedron Lett. 1992; 33: 3057
    • 15d Saicic RN, Zard SZ. Chem. Commun. 1996; 1631
    • 15e Forbes JE, Saicic RN, Zard SZ. Tetrahedron 1999; 55: 3791
    • 15f Plessis C, Derrer S. Tetrahedron Lett. 2001; 42: 6519
    • 15g Takahashi S, Nakata T. J. Org. Chem. 2002; 67: 5739
    • 15h Baguley PA, Jackson LV, Walton JC. J. Chem. Soc., Perkin Trans. 1 2002; 304
  • 16 Taniguchi T, Sugiura Y, Zaimoku H, Ishibashi Y. Angew. Chem. Int. Ed. 2010; 49: 10154
    • 17a Xu X, Tang Y, Li X, Hong G, Fang M, Du X. J. Org. Chem. 2014; 79: 446
    • 17b Wang G, Wang S, Wang J, Chen S.-Y, Yu X.-Q. Tetrahedron 2014; 70: 3466
    • 17c Li X, Fang M, Hu P, Hong G, Tang Y, Xu X. Adv. Synth. Catal. 2014; 356: 2103
    • 17d Pan C, Han J, Zhang H, Zhu C. J. Org. Chem. 2014; 79: 5374
    • 17e Wang G, Chen S.-Y, Yu X.-Q. Tetrahedron Lett. 2014; 55: 5338
    • 17f Ding R, Zhang Q.-C, Xu Y.-H, Loh T.-P. Chem. Commun. 2014; 50: 11661
    • 17g Zong Z, Lu S, Wang W, Li Z. Tetrahedron Lett. 2015; 56: 6719
    • 17h Gao Y, Lu W, Liu P, Sun P. J. Org. Chem. 2016; 81: 2482
    • 17i Li X, Fang X, Zhuang S, Liu P, Sun P. Org. Lett. 2017; 19: 3580
    • 17j Kanazawa J, Maeda K, Uchiyama M. J. Am. Chem. Soc. 2017; 139: 17791
    • 17k Li C.-K, Zhang D.-L, Olamiji OO, Zhang P.-Z, Shoberu A, Zou J.-P, Zhang W. Synthesis 2018; 50: 2968
    • 17l Xie L.-Y, Peng S, Fan T.-G, Liu Y.-F, Sun M, Jiang L.-L, Wang X.-X, Cao Z, He W.-M. Sci. China Chem. 2019; 62: 460
  • 18 Taniguchi T, Idota A, Ishibashi H. Org. Biomol. Chem. 2011; 9: 3151

    • Reviews on sulfonylation using sulfonyl hydrazides and others:
    • 19a Yang F.-L, Tian S.-K. Tetrahedron Lett. 2017; 58: 487
    • 19b Li Y, Fan Y. Synth. Commun. 2019; 49: 3227
  • 20 Taniguchi T, Idota A, Yokoyama S, Ishibashi H. Tetrahedron Lett. 2011; 52: 4768
  • 21 Taniguchi T, Zaimoku H, Ishibashi H. Chem. Eur. J. 2011; 17: 4307
  • 22 Su Y, Sun X, Wu G, Jiao N. Angew. Chem. Int. Ed. 2013; 52: 9808
  • 23 Hosseinian A, Mohammadi R, Ahmadi S, Monfared A, Rahmani Z. RSC Adv. 2018; 8: 33828

    • Selected reviews on Mitsunobu reactions:
    • 24a Mitsunobu O. Synthesis 1981; 1
    • 24b Hughes DL. Org. React. 1992; 42: 335
    • 24c But TY. S, Toy PH. Chem. Asian J. 2007; 2: 1340
    • 24d Swamy KC. K, Kumar NN. B, Balaraman E, Kumar KV. P. P. Chem. Rev. 2009; 109: 2551
    • 24e Fletcher S. Org. Chem. Front. 2015; 2: 739
    • 25a But TY. S, Toy PH. J. Am. Chem. Soc. 2006; 128: 9636
    • 25b But TY. S, Lu J, Toy PH. Synlett 2010; 1115
  • 26 Hirose D, Taniguchi T, Ishibashi H. Angew. Chem. Int. Ed. 2013; 52: 4613
  • 27 Hirose D, Gazvoda M, Košmrlj J, Taniguchi T. Chem. Sci. 2016; 7: 5148
  • 28 Hashimoto T, Hirose D, Taniguchi T. Adv. Synth. Catal. 2015; 357: 3346
  • 29 Berger A, Wehrstedt KD. J. Loss Prev. Process Ind. 2010; 23: 734
  • 30 Hirose D, Gazvoda M, Košmrlj J, Taniguchi T. J. Org. Chem. 2018; 83: 4712
    • 31a O’Brien CJ, Tellez JL, Nixon ZS, Kang LJ, Carter AL, Kunkel SR, Przeworski KC, Chass GA. Angew. Chem. Int. Ed. 2009; 48: 6836
    • 31b O’Brien CJ. PCT Int. Appl WO2010/118042A2, 2010
    • 31c O’Brien CJ, Lavigne F, Coyle EE, Holohan AJ, Doonan BJ. Chem. Eur. J. 2013; 19: 5854
    • 31d O’Brien CJ, Nixon ZS, Holohan AJ, Kunkel SR, Tellez JL, Doonan BJ, Coyle EE, Lavigne F, Kang LJ, Przeworski KC. Chem. Eur. J. 2013; 19: 15281
  • 32 Buonomo JA, Aldrich CC. Angew. Chem. Int. Ed. 2015; 54: 13041
  • 33 Hirose D, Gazvoda M, Košmrlj J, Taniguchi T. Org. Lett. 2016; 18: 4036
  • 34 A review on catalytic Mitsunobu reactions: Beddoe RH, Sheddon HF, Denton RM. Org. Biomol. Chem. 2018; 16: 7774
  • 35 Beddoe RH, Andrews KG, Magne V, Cuthbertson JD, Saska J, Shannon-Little AL, Shanahan SE, Sneddon HF, Denton RM. Science 2019; 365: 910
  • 36 Taniguchi T, Hirose D, Ishibashi H. ACS Catal. 2011; 1: 1469
    • 37a Akondi SM, Gangireddy P, Pickel TC, Liebeskind LS. Org Lett. 2018; 20: 538
    • 37b Pickel TC, Akondi SM, Liebeskind LS. J. Org. Chem. 2019; 84: 4954
    • 38a Taniguchi T, Ishibashi H. Org. Lett. 2010; 12: 124
    • 38b Taniguchi T, Fujii T, Ishibashi H. J. Org. Chem. 2010; 75: 8126
  • 39 Taniguchi T, Yajima A, Ishibashi H. Adv. Synth. Catal. 2011; 353: 2643
  • 40 Taniguchi T, Sugiura Y, Hatta T, Yajima A, Ishibashi H. Chem. Commun. 2013; 49: 2198
  • 41 Hirose D, Taniguchi T. Beilstein J. Org. Chem. 2013; 9: 1713

    • Recent reviews on reactions with tert-butyl nitrite:
    • 42a Li P, Jia X. Synthesis 2018; 50: 711
    • 42b Khaligh NG. Curr. Org. Chem. 2018; 22: 1120
    • 42c Dahiya A, Sahoo AK, Alam T, Patel BK. Chem. Asian J. 2019; 14: 4454