Synthesis 2020; 52(24): 3693-3713
DOI: 10.1055/s-0040-1707287
review

Syntheses of Analogues of Propofol: A Review

Ivaylo V. Dimitrov
a   Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand   Email: i.dimitrov@auckland.ac.nz
,
Elina E. K. Suonio
b   School of Environment, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
› Author Affiliations
The authors would like to thank the Auckland Cancer Society Research Centre for financial support.


Abstract

Propofol (2,6-diisopropylphenol) is an intravenous sedative/hypnotic agent that is used extensively for introduction and maintenance of general anaesthesia, sedation of critically ill patients and procedural sedation (e.g., endoscopy). Propofol has a rapid onset and offset of action and shows only minimal accumulation upon prolonged use. Propofol is only sparingly soluble in water and is currently marketed in 10% soybean oil-based lipid emulsion. Propofol’s anaesthetic properties were discovered over forty years ago, and it has been in clinical use for over thirty years. The main use of propofol remains as an anaesthetic but, over the years, analogues have been developed with varying properties from anticancer, anticonvulsant and antioxidant. In addition, large synthetic efforts have been made towards improving propofol’s water-solubility, its activity, and elucidating its structure–activity­ relationship and exact mechanism of action have been made. This review provides an overview of the research pertaining to propofol-like molecules and covers the efforts of synthetic chemists towards propofol analogues over the last 40 years.

1 Introduction

2 History

3 Early Work

4 Improving Water Solubility

5 The Importance of the Phenol

6 Exploring the Structure–Activity Relationship and Attempts to Improve Activity

7 Anticancer Activity

8 Anticonvulsant Properties

9 Antioxidant Activity

10 Photoactive Labelling to Elucidate Mechanism of Action

11 Photoregulation

12 Conclusion



Publication History

Received: 31 May 2020

Accepted after revision: 22 August 2020

Article published online:
05 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Vanlersberghe C, Camu F. Handb. Exp. Pharmacol. 2008; 182: 227
  • 2 James R, Glen JB. J. Med. Chem. 1980; 23: 1350
  • 3 Apfel CC, Korttila K, Abdalla M, Kerger H, Turan A, Vedder I, Zernak C, Danner K, Jokela R, Pocock SJ, Trenkler S, Kredel M, Biedler A, Sessler DI, Roewer N. N. Engl. J. Med. 2004; 350: 2441
  • 4 Krasowski M, Hong X, Hopfinger AJ, Harrison NL. J. Med. Chem. 2002; 45: 3210
  • 5 Baker MT, Naguib M. Anesthesiology 2005; 103: 860
  • 6 Feng AY, Kaye AD, Kaye RJ, Belani K, Urman RD. J. Anaesthesiol. Clin. Pharmacol. 2017; 33: 9
  • 7 Jenkins TE. WO 2008/141097, 2008
  • 8 Ito Y, Izumi H, Sato M, Karita K, Iwatsuki N. Br. J. Anaesth. 1998; 81: 563
  • 9 Zhan RZ, Qi S, Wu C, Fujihara H, Taga K, Shimoji K. Crit. Care Med. 2001; 29: 808
  • 10 Lee J. J. Korean Med. Sci. 2012; 27: 1451
  • 11 Sitar SM, Hanifi-Moghaddam P, Gelb A, Cechetto DF, Siushansian R, Wilsom JX. Anesthesiology 1999; 90: 1446
  • 12 Murphy PG, Myers DS, Davies MJ, Webster NR, Jones JG. Br. J. Anaesth. 1992; 68: 613
  • 13 Kay B, Rolly G. Acta Anaesthesiol. Belg. 1977; 28: 317
  • 14 Cummings GC, Dixon J, Kay NH, Windsor JP, Major E, Morgan M, Sear JW, Spence AA, Stephenson DK. Anaesthesia 1984; 39: 1168
  • 15 Kotani Y, Shimazawa M, Yoshimura S, Iwama T, Hara H. CNS Neurosci. Ther. 2008; 14: 95
  • 16 Tan L.-H, Hwang N.-C. Anesth. Analg. 2003; 97: 461
  • 17 Stella VJ, Zygmunt JJ, Georg IG, Safadi MS. WO2000008033A1, 2000
  • 18 Cohen LB. Aliment. Pharmacol. Ther. 2008; 27: 597
  • 19 Harris EA, Lubarsky DA, Candiotti KA. Ther. Clin. Risk Manage. 2009; 5: 949
  • 20 Krasowski MD, Hopfinger AJ. Expert Opin. Drug Discovery 2011; 6: 1187
  • 21 Cooke A, Anderson A, Buchanan K, Byford A, Gemmell DK, Hamilton N, McPhail P, Miller S, Sundaram H, Vijn P. Bioorg. Med. Chem. Lett. 2001; 11: 927
  • 22 Bennett J, Anderson A, Buchanan K, Byford A, Cooke A, Gemmell DK, Hamilton NM, Maidment MS, McPhail P, Stevenson FM. D, Sundaram H, Vijn P. Bioorg. Med. Chem. Lett. 2003; 13: 1971
  • 23 Anderson A, Belelli D, Bennett DJ, Buchanan KI, Casula A, Cooke A, Feilden H, Gemmell DK, Hamilton NM, Hutchinson EJ, Lambert JJ, Maidment MS, McGuire R, McPhail P, Miller S, Muntoni A, Peters JA, Sansbury FH, Stevenson D, Sundaram H. J. Med. Chem. 2001; 44: 3582
  • 24 Shull B, Baldwin J, Gopalaswamy R, Haroon Z. US 20120295866A1, 2012
  • 25 Baldwin J, Gopalaswamy R, Haroon Z, Shull B. WO 2012142141A1, 2012
  • 26 Shull B, Baldwin J, Gopalaswamy R, Haroon Z. US20120264702A1, 2012
  • 27 Woll KA, Weiser BP, Liang Q, Meng T, McKinstry-Wu A, Pinch B, Dailey WP, Gao WD, Covarrubias M, Eckenhoff RG. ACS Chem. Neurosci. 2015; 6 (06) 927
  • 28 Trapani G, Latrofa A, Franco M, Altomare C, Senna E, Usala M, Biggio G, Liso G. J. Med. Chem. 1998; 41: 1846
  • 29 Kerr DI. B, Khalafy J, Ong J, Perkins MV, Prager RH, Puspawati NM, Rimaz M. Aust. J. Chem. 2006; 59: 457
  • 30 Jones PJ, Wang Y, Smith MD, Hargus NJ, Eidam HS, White HS, Kapur J, Brown ML, Patel MK. J. Pharmacol. Exp. Ther. 2007; 320: 828
  • 31 Tao C, Yu CZ, Desai NP, Trieu V. WO2005/063665, 2005
  • 32 Jenkins TE. WO2009/140275A1, 2009
  • 33 Hall AC, Griffith TN, Tsikolia M, Kotey FO, Gill N, Humbert DJ, Watt EE, Yermolina YA, Goel S, El-Ghendy B, Hall CD. Eur. J. Pharmacol. 2011; 667: 175
  • 34 Qin L, Ren L, Wan S, Liu G, Luo X, Liu Z, Li F, Yu Y, Liu J, Wei Y. J. Med. Chem. 2017; 60: 3606
  • 35 Wei J, Luo J, Lv X. Int. J. Clin. Exp. Med. 2017; 10: 5995
  • 36 Mohammad A, Faruqi FB, Mustafa J. J. Cancer Ther. 2010; 1: 124
  • 37 Harvey KA, Xu Z, Whitley P, Davisson VJ, Siddiqui RA. Bioorg. Med. Chem. 2010; 18: 1866
  • 38 Khan AA, Alam M, Tufail S, Mustafa J, Owais M. Eur. J. Med. Chem. 2011; 46: 4878
  • 39 Lowson S, Gent JP, Goodchild CS. Br. J. Anaesth. 1990; 64: 59
  • 40 Baker MT. Anesth. Analg. 2011; 112: 340
  • 41 Murphy PG, Myers DS, Davies MJ, Webster NR, Jones JG. Br. J. Anaesth. 1992; 68: 613
  • 42 Ponticelli F, Trendafilova A, Valoti M, Saponara S, Sgaragli G. Carbohydr. Res. 2001; 330: 459
  • 43 Desai NP, Tao C, Yu C, Trieu V, Soon-Shiong P. WO2006089120, 2006
  • 44 Hall MA, Jin X, Lor C, Dia S, Pearce R, Dailey WP, Eckenhoff RG. J. Med. Chem. 2010; 53: 5667
  • 45 Stewart DS, Savechenkov PY, Dostalova Z, Chiara DC, Ge R, Raines DE, Cohen JB, Forman SA, Bruzik KS, Miller KW. J. Med. Chem. 2011; 54: 8124
  • 46 Yip GM. S, Zi-Wei C, Edge CJ, Smith EH, Dickinson R, Hohenester E, Townsend RR, Fuchs K, Sieghart W, Evers AS, Franks NP. Nat. Chem. Biol. 2013; 9: 715
  • 47 Jayakar SS, Zhou X, Chiara DC, Dostalova Z, Savechenkov PY, Bruzik KS, Dailey WP, Miller KW, Eckenhoff RG, Cohen JB. J. Biol. Chem. 2014; 289: 27456
  • 48 Woll KA, Murlidaran S, Pinch BJ, Henin J, Wang X, Salari R, Covarrubias M, Dailey WP, Brannigan G, Garcia BA, Eckenhoff RG. J. Biol. Chem. 2016; 291: 20473
  • 49 Stein M, Middendorp SJ, Carta V, Pejo E, Raines DE, Forman SA, Sigel E, Trauner D. Angew. Chem. Int. Ed. 2012; 51: 10500
  • 50 Yue L, Pawlowski M, Dellal SS, Xie A, Feng F, Otis TS, Bruzik KS, Qian H, Pepperberg DR. Nat. Commun. 2012; 3: 1095
  • 51 World Health Organization (2019). World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization. hdl:10665/325771. WHO/MVP/EMP/IAU/2019.06. License: CC BY-NC-SA 3.0 IGO.