Synthesis 2021; 53(03): 461-474
DOI: 10.1055/s-0040-1707316
short review

Synthesis and Crystal Engineering of Rubrene and Its Derivatives

,
Emma C. Murphy
,


Abstract

Rubrene (5,6,11,12-tetraphenyltetracene) is a polyacene material that has been well studied throughout its nearly one-hundred year history. Originally found fascinating for its luminescent properties, it has emerged at the forefront for organic electronics due to its particularly high charge carrier mobility for an organic crystal. Despite great interest and its explosion in the literature over the past two decades, the commercial synthesis of rubrene has remained relatively unchanged since its initial discovery in 1926. Several recent studies have reported alternate routes to the rubrene structure with substitutions on the peripheral­ aromatic rings and tetracene core. Substituting in this manner has the potential to improve upon rubrene’s electronic properties. We review the various routes to rubrene and its derivatives and provide a brief overview of the solid-state library available for study. The information gained by comparing the solid-state properties between derivatives offers insight into unpredictable crystallization and polymorphism – complicated issues – which have hindered research into materials applications­ of rubrene. We hope that these insights inspire work in application­-driven synthetic chemistry for future rubrene derivatives.

1 Introduction

2 Synthesis

2.1 Traditional Rubrene Synthesis

2.1.1 Recent Applications

2.2 Multi-Step Synthesis

2.2.1 Historical Routes

2.2.2 Diels–Alder Approaches

2.2.3 Cross-Coupling Approaches

2.2.4 Comparative Synthesis of Perfluororubrene

3 Crystal Engineering

4 Conclusions and Outlook



Publication History

Received: 03 August 2020

Accepted: 08 September 2020

Article published online:
28 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Podzorov V. MRS Bull. 2013; 38: 15
    • 1b Schweicher G, Garbay G, Jouclas R, Vibert F, Devaux F, Geerts YH. Adv. Mater. 2020; 32: 1905909
    • 1c Forrest SR. Nature 2004; 428: 911
  • 2 Takeya J, Yamagishi M, Tominari Y, Hirahara R, Nakazawa Y, Nishikawa T, Kawase T, Shimoda T, Ogawa S. Appl. Phys. Lett. 2007; 90: 102120
    • 3a Hasegawa T, Takeya J. Sci. Technol. Adv. Mater. 2009; 10: 024314
    • 3b Anthony JE. Angew. Chem. Int. Ed. 2008; 47: 452
  • 4 Moureu C, Dufraisse C, Dean PM. C. R. Acad. Sci., Paris 1926; 182: 1440
    • 5a Clennan EL, Mehrsheikh-Mohammadi ME. J. Am. Chem. Soc. 1983; 105: 5932
    • 5b Ly JT, Lopez SA, Lin JB, Kim JJ, Lee H, Burnett EK, Zhang L, Aspuru-Guzik A, Houk KN, Briseno AL. J. Mater. Chem. C 2018; 6: 3757
  • 6 Richter MM. Chem. Rev. 2004; 104: 3003
  • 7 AlphaScreen & AlphaLISA No-wash Assays (accessed Jul 15, 2020) https://www.perkinelmer.com/lab-products-and-services/application-support-knowledgebase/alphalisa-alphascreen-no-wash-assays/alphalisa-alphascreen-no-washassays-main.html
  • 8 Bindra PS, Burris AD, Carlson CR, Smith JM, Tyler OZ, Watson DL. US Pat. Appl 20080308776, 2008
  • 9 Najafov H, Lee B, Zhou Q, Feldman LC, Podzorov V. Nat. Mater. 2010; 9: 938
    • 10a Ma L, Zhang K, Kloc C, Sun H, Michel-Beyerle ME, Gurzadyan GG. Phys. Chem. Chem. Phys. 2012; 14: 8307
    • 10b Wang X, Garcia T, Monaco S, Schatschneider B, Marom N. CrystEngComm 2016; 18: 7353
    • 10c Bera K, Douglas CJ, Frontiera RR. J. Phys. Chem. Lett. 2017; 8: 5929
  • 11 Podzorov V, Menard E, Rogers JA, Gershenson ME. Phys. Rev. Lett. 2005; 95: 226601
    • 12a Sundar VC, Zaumseil J, Podzorov V, Menard E, Willett RL, Someya T, Gershenson ME, Rogers JA. Science 2004; 303: 1644
    • 12b Menard E, Podzorov V, Hur SH, Gaur A, Gershenson ME, Rogers JA. Adv. Mater. 2004; 16: 2097
    • 13a Deng WQ, Sun L, Huang JD, Chai S, Wen SH, Han KL. Nat. Protoc. 2015; 10: 632
    • 13b Reyes-Martinez MA, Crosby AJ, Briseno AL. Nat. Commun. 2015; 6: 6948
    • 13c Wen SH, Li A, Song J, Deng WQ, Han KL, Goddard WA. J. Phys. Chem. B 2009; 113: 8813
  • 14 Mullenbach TK, McGarry KA, Luhman WA, Douglas CJ, Holmes RJ. Adv. Mater. 2013; 25: 3689
  • 15 Matsukawa T, Yoshimura M, Sasai K, Uchiyama M, Yamagishi M, Tominari Y, Takahashi Y, Takeya J, Kitaoka Y, Mori Y, Sasaki T. J. Cryst. Growth 2010; 312: 310
  • 16 Strobel V.; 2018. Pold87/academic-keyword-occurrence: First release. Zenodo.
    • 17a Moureu C, Dufraisse C, Robin J. C. R. Acad. Sci., Paris 1929; 188: 1582
    • 17b Bergmann E, Herlinger E. J. Chem. Phys. 1936; 4: 532
  • 18 Dufraisse C, Velluz L. C. R. Acad. Sci., Paris 1935; 201: 1394
  • 19 Rigaudy J, Capdevielle P. Tetrahedron 1977; 33: 767
  • 20 Braga D, Jaafari A, Miozzo L, Moret M, Rizzato S, Papagni A, Yassar A. Eur. J. Org. Chem. 2011; 4160
  • 21 Zeis R, Besnard C, Siegrist T, Schlockermann C, Chi X, Kloc C. Chem. Mater. 2006; 18: 244
  • 22 Uttiya S, Miozzo L, Fumagalli EM, Bergantin S, Ruffo R, Parravicini M, Papagni A, Moret M, Sassella A. J. Mater. Chem. C 2014; 2: 4147
  • 23 Allen CF. H, Gilman L. J. Am. Chem. Soc. 1936; 58: 937
  • 24 Dodge JA, Bain JD, Chamberlin AR. J. Org. Chem. 1990; 55: 4190
  • 25 McGarry, K. A.; Douglas, C. J. unpublished results.
  • 26 Sakamoto Y, Suzuki T. J. Org. Chem. 2017; 82: 8111
  • 27 Zhang Z, Ogden WA, Young VG, Douglas CJ. Chem. Commun. 2016; 52: 8127
  • 28 Ogden WA, Ghosh S, Bruzek MJ, McGarry KA, Balhorn L, Young V, Purvis LJ, Wegwerth SE, Zhang Z, Serratore NA, Cramer CJ, Gagliardi L, Douglas CJ. Cryst. Growth Des. 2017; 17: 643
  • 29 Xie W, McGarry KA, Liu F, Wu Y, Ruden PP, Douglas CJ, Frisbie CD. J. Phys. Chem. C 2013; 117: 11522
  • 30 Ren X, Bruzek MJ, Hanifi DA, Schulzetenberg A, Wu Y, Kim C.-H, Zhang Z, Johns JE, Salleo A, Fratini S, Troisi A, Douglas CJ, Frisbie CD. Adv. Electron. Mater. 2017; 3: 1700018
    • 31a McGarry KA. Dissertation. University of Minnesota - Twin Cities; USA: 2013
    • 31b Yagodkin E, Xia Y, Kalihari V, Frisbie CD, Douglas CJ. J. Phys. Chem. C 2009; 113: 16544
  • 32 Yagodkin E, McGarry KA, Douglas CJ. Org. Prep. Proced. Int. 2011; 43: 360
  • 33 McGarry KA, Xie W, Sutton C, Risko C, Wu Y, Young VG, Brédas JL, Frisbie CD, Douglas CJ. Chem. Mater. 2013; 25: 2254
  • 34 Mamada M, Katagiri H, Sakanoue T, Tokito S. Cryst. Growth Des. 2015; 15: 442
  • 35 Xie G, Hahn S, Rominger F, Freudenberg J, Bunz UH. F. Chem. Commun. 2018; 54: 7593
  • 36 Gu X, Luhman WA, Yagodkin E, Holmes RJ, Douglas CJ. Org. Lett. 2012; 14: 1390
  • 37 Sakamoto Y, Suzuki T, Kobayashi M, Gao Y, Fukai Y, Inoue Y, Sato F, Tokito S. J. Am. Chem. Soc. 2004; 126: 8138
  • 38 da Silva Filho DA, Kim EG, Brédas JL. Adv. Mater. 2005; 17: 1072
  • 39 Curtis MD, Cao J, Kampf JW. J. Am. Chem. Soc. 2004; 126: 4318
    • 40a Wang C, Dong H, Jiang L, Hu W. Chem. Soc. Rev. 2018; 47: 422
    • 40b Sutton C, Tummala NR, Beljonne D, Brédas JL. Chem. Mater. 2017; 29: 2777
    • 41a Carman L, Martinez HP, Voss L, Hunter S, Beck P, Zaitseva N, Payne SA, Irkhin P, Choi HH, Podzorov V. IEEE Trans. Nucl. Sci. 2017; 64: 781
    • 41b Matsukawa T, Takahashi Y, Tokiyama T, Sasai K, Murai Y, Hirota N, Tominari Y, Mino N, Yoshimura M, Abe M, Takeya J, Kitaoka Y, Mori Y, Morita S, Sasaki T. Jpn. J. Appl. Phys. 2008; 47: 8950
    • 42a Fumagalli E, Raimondo L, Silvestri L, Moret M, Sassella A, Campione M. Chem. Mater. 2011; 23: 3246
    • 42b Mastrogiovanni DD. T, Mayer J, Wan AS, Vishnyakov A, Neimark AV, Podzorov V, Feldman LC, Garfunkel E. Sci. Rep. 2014; 4: 4753
  • 43 Paraskar AS, Reddy AR, Patra A, Wijsboom YH, Gidron O, Shimon LJ. W, Leitus G, Bendikov M. Chem. Eur. J. 2008; 14: 10639
    • 44a Chung H, Diao Y. J. Mater. Chem. C 2016; 4: 3915
    • 44b Vippagunta SR, Brittain HG, Grant DJ. W. Adv. Drug Deliv. Rev. 2001; 48: 3
    • 44c Desiraju GR. Angew. Chem. Int. Ed. 2007; 46: 8342
    • 44d Reilly AM, Cooper RI, Adjiman CS, Bhattacharya S, Boese AD, Brandenburg JG, Bygrave PJ, Bylsma R, Campbell JE, Car R, Case DH, Chadha R, Cole JC, Cosburn K, Cuppen HM, Curtis F, Day GM, DiStasio RA, Dzyabchenko A, Van Eijck BP, Elking DM, Van Den Ende JA, Facelli JC, Ferraro MB, Fusti-Molnar L, Gatsiou CA, Gee TS, De Gelder R, Ghiringhelli LM, Goto H, Grimme S, Guo R, Hofmann DW. M, Hoja J, Hylton RK, Iuzzolino L, Jankiewicz W, De Jong DT, Kendrick J, De Klerk NJ. J, Ko HY, Kuleshova LN, Li X, Lohani S, Leusen FJ. J, Lund AM, Lv J, Ma Y, Marom N, Masunov AE, McCabe P, McMahon DP, Meekes H, Metz MP, Misquitta AJ, Mohamed S, Monserrat B, Needs RJ, Neumann MA, Nyman J, Obata S, Oberhofer H, Oganov AR, Orendt AM, Pagola GI, Pantelides CC, Pickard CJ, Podeszwa R, Price LS, Price SL, Pulido A, Read MG, Reuter K, Schneider E, Schober C, Shields GP, Singh P, Sugden IJ, Szalewicz K, Taylor CR, Tkatchenko A, Tuckerman ME, Vacarro F, Vasileiadis M, Vazquez-Mayagoitia A, Vogt L, Wang Y, Watson RE, De Wijs GA, Yang J, Zhu Q, Groom CR. Acta Crystallogr., Sect. B 2016; 72: 439
    • 45a Davey RJ. Chem. Commun. 2003; 1463
    • 45b Salzillo T, Giunchi A, Masino M, Bedoya-Martĺnez N, Della Valle RG, Brillante A, Girlando A, Venuti E. Cryst. Growth Des. 2018; 18: 4869
    • 45c McCrone WC. In Physics and Chemistry of the Organic Solid State, Vol. 2. Fox D. Wiley-Interscience; New York: 1963
    • 46a Sutton C, Marshall MS, Sherrill CD, Risko C, Brédas JL. J. Am. Chem. Soc. 2015; 137: 8775
    • 46b Bergantin S, Moret M. Cryst. Growth Des. 2012; 12: 6035
  • 47 Jurchescu OD, Meetsma A, Palstra TT. M. Acta Crystallogr, Sect. B 2006; 62: 330
  • 48 Huang L, Liao Q, Shi Q, Fu H, Ma J, Yao J. J. Mater. Chem. 2010; 20: 159
  • 49 Schuck G, Haas S, Stassen AF, Kirner HJ, Batlogg B. Acta Crystallogr., Sect. E 2007; 63: o2893
  • 50 Wu Y, Ren X, McGarry KA, Bruzek MJ, Douglas CJ, Frisbie CD. Adv. Electron. Mater. 2017; 3: 1700117
  • 51 Bergantin S, Mowret M, Buth G, Fabbiani FP. A. J. Phys. Chem. C 2014; 118: 13476