Total Synthesis of Surinamensinols A and B

Satya Kumar Avula ${ }^{\text {a }}$ (
Biswanath Das ${ }^{\text {a }}$
Rene Csuk ${ }^{\text {b }}$
Ahmed Al-Rawahia ${ }^{\text {a }}$
Ahmed Al-Harrasi* ${ }^{*}$
${ }^{a}$ Natural and Medical Sciences Research Center, University of
Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
aharrasi@unizwa.edu.om
${ }^{\text {b }}$ Organic Chemistry, Martin-Luther-University Halle-Witten-
berg, Kurt-Mothes-Str. 2, 06120, Halle (Saale), Germany

(S)-Ethyl lactate

7R: Surinamensinol A
7S: Surinamensinol B
Anti-inflammatory and antitumour natural neolignans

Received: 08.09.2020
Accepted after revision: 24.09.2020
Published online: 15.10.2020
DOI: 10.1055/s-0040-1707325; Art ID: so-2020-d0031-op
© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Abstract An efficient total synthesis of the naturally occurring antiinflammatory and antitumour 8-0-4'-neolignans, surinamensinols A and B, has been accomplished from commercially available allyl alcohol and (S)-ethyl lactate. The synthetic sequence involves a palladium-catalysed Suzuki-Miyaura cross-coupling reaction followed by a chiral Mitsunobu reaction as the key steps. This is the first report of the simultaneous stereoselective total synthesis of surinamensinols A and B through a single approach involving only six steps.

Keywords Surinamensinol A B, anti-inflammatory and antitumour neolignans, stereoselective total synthesis, Suzuki-Miyaura cross coupling, Mitsunobu reaction

Lignans and neolignans are common, naturally occurring secondary plant metabolites that are generated via the shikimic acid pathway. ${ }^{1,2}$ Large numbers of natural products of these categories have been found in plants. ${ }^{3,4}$ These plant metabolites exhibit a wide range of biological properties, such as antileishmanial, platelet activity factor (PAF) antagonism, antiparasitic, trypanocidal, antimalarial and anticancer activities. ${ }^{5-8}$ The surinamensinols are recently disclosed examples of these classes of compounds. Two new diastereomeric 8-0-4'-neolignans, surinamensinols A (1) and $B(\mathbf{2})$ (Figure 1), along with thirteen other phenolic derivatives, have recently been isolated from the rhizome extracts of an aquatic perennial herbaceous plant, Acorus gramineus Soland (Araceae), which is widely distributed in China, Korea and Japan. ${ }^{9}$

Surinamensinol A (1) possesses the ($7 R, 8 R$)-configuration, whereas surinamensinol B (2) possesses the ($7 S, 8 R$)configuration (Figure 1). Compounds 1 and 2 exhibit impressive anti-inflammatory and antitumour activities and significant inhibition of nitric oxide (NO) levels in LPS-stimulated BV-2 cells. ${ }^{9}$ They also showed potentially useful cytotoxicity towards the A549 cell line and displayed significant antiproliferative activity against SK-OV-3, SK-MEL-2, and HCT-15 cell lines. ${ }^{9}$

Figure 1 Chemical structures of surinamensinols $A(1)$ and $B(2)$

In a continuation of our work ${ }^{10,11}$ on the synthesis of natural products, we herein disclose the stereoselective total synthesis of surinamensinols A (1) and B (2). Our present work involves the preparation of both diastereomeric 8-$0-4$ '-oxyneolignans, surinamensinols $A(\mathbf{1})$ and $B(2)$ simultaneously from easily available allyl alcohol and (S)-ethyl lactate. Previously, surinamensinol A (1) was synthesized by Das et al. in 16 steps in an overall yield of $10 \%{ }^{12}$ On the other hand, surinamensinol B (2) was synthesized by Lalwani and Sudalai by following a synthetic sequence that involved 18 steps, with the target molecule $\mathbf{2}$ being formed in an overall yield of $17 \%{ }^{13}$

The retrosynthetic analysis of compounds $\mathbf{1}$ and $\mathbf{2}$ indicated that both molecules could be synthesized from the chiral ester 3, derived from the phenol benzyl ether 4 and (S)-ethyl lactate 5. Compound 4 can, in turn, be obtained from 4-bromo-2-methoxyphenol 6 and allyl alcohol 7 (Scheme 1).

	THIEME	
SynOpen	S. K. Avula et al.	OPEN ACCESS

7R: Surinamensinol A (1)
7S: Surinamensinol B (2)

$\sqrt{6}$

6
7

Scheme 1 Retrosynthetic analysis of surinamensinols A (1) and B (2)

Our synthesis was initiated with allyl alcohol 7 (Scheme 2), which was reacted with benzyl bromide in the presence of NaH in anhydrous THF when the primary hydroxyl group of the former was protected to furnish the product $\mathbf{8}$ in high yield (98%). We also attempted the reaction with the TBS protecting group but due to the low volatility of the product it was difficult to isolate. Compound $\mathbf{8}$ underwent hydroboration ${ }^{14}$ with 9-BBN (9-borabicyclo[3.3.1]nonane solution
0.5 M in THF) to form a protected allyl diorganoborane adduct that was not isolated, but was treated in situ with 4-bromo-2-methoxyphenol (6) in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in anhydrous THF at reflux for 12 h (Suzuki-Miyaura coupling reaction conditions) to yield the phenol benzyl ether $4(86 \%)$, which was further purified and separated. ${ }^{15}$ Compound 4 was coupled with (S)-ethyl lactate (5) under Mitsunobu reaction conditions using diisopropyl azodicarboxylate (DIAD) and PPh_{3} in anhydrous THF to afford the desired chiral ester 3 in high yield (88%). ${ }^{16,17}$ The Mitsunobu reaction with similar substrates is well known and previous workers also obtained products with clean inversion. ${ }^{18} \mathrm{We}$ followed the experimental procedure of these earlier studies to generate compound 3.

Reduction of compound 3 with DIBAL-H at $-78{ }^{\circ} \mathrm{C}$ to $0{ }^{\circ} \mathrm{C}$ gave the corresponding aldehyde in good yield, which was then treated with 3,4,5-trimethoxyphenyl magnesium bromide in anhydrous THF. ${ }^{18}$ A mixture of products was formed. We presumed this mixture might contain the synand anti-diastereomers of compound 9 (as evident from the next step and also from the HRMS, which showed m / z $519.2347\left[\mathrm{M}+\mathrm{Na}^{+}\right]$) along with a similar amount of starting materials. TLC and HPLC examination did not result in clean resolution of the constitutes of the mixture. We were also unable to obtain a meaningful ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture due to solubility problems with the product mixture.

Finally, we attempted the removal of the benzyl ether from the mixture 9 by hydrogenation in the presence of $10 \% \mathrm{Pd}-\mathrm{C} .{ }^{19}$ We were pleased to observe that this conversion yielded a separable mixture of surinamensinol A (1) and surinamensinol B (2), which could be separated and

Scheme 2 Reagents and conditions: (a) $\mathrm{NaH}, \mathrm{BnBr}$, anhydrous THF, $0^{\circ} \mathrm{C}$ to room temperature, $4 \mathrm{~h}, 98 \%$; (b) (i) $9-\mathrm{BBN}$, anhydrous THF, $0{ }^{\circ} \mathrm{C}$ to room temperature, 2 h (ii) 4-bromo-2-methoxyphenol 6, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)$, anhydrous THF, reflux, $12 \mathrm{~h}, 86 \%$ (2 steps); (c) PPh ${ }_{3}$, DIAD, anhydrous THF, reflux, 24 h, 88%; (d) DIBAL-H, anhydrous DCM, $-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$ (e) (3,4,5-trimethoxyphenyl) magnesium bromide, anhydrous THF, $0^{\circ} \mathrm{C}$ to room temperature, 19 h ; (f) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$, EtOAc, room temperature, $2 \mathrm{~h}, 49 \%$ (combined 1 and $\mathbf{2}$ from compound $\mathbf{3}$).
purified by column chromatography. The physical and spectroscopic properties of these compounds were found to be identical to those reported for the natural products. ${ }^{9}$

In conclusion, an efficient approach to the total synthesis of anti-inflammatory and antitumour 8-0-4'-neolignans, surinamensinols A (1) and B(2), has been described. The key steps in the synthetic sequence include a Pd-catalysed Suzuki-Miyaura cross-coupling reaction and a chiral Mitsunobu protocol as key steps. This approach resulted in the preparation of $\mathbf{1}$ and $\mathbf{2}$, which were subsequently separated by column chromatography. The overall yields of $\mathbf{1}$ and 2 starting from 7 were 14 and 22%, respectively, from only six synthetic steps. This is the first report of the total synthesis of surinamensinols A and B by a common approach.

All experiments were carried out in dry reaction vessels under dry nitrogen atmosphere. All reagents were purchased from Sigma-Aldrich, Germany. Solvents were purified and dried according to standard procedures. Analytical data were recorded with the following instruments: Specific rotations were measured using the sodium D line with a Kruss Optronic polarimeter. IR spectra were recorded with a Perkin Elmer RX FT-IR spectrophotometer, wave numbers (v) being reported in cm^{-1}. High-resolution electrospray ionization mass spectra (HR-ESI-MS) were recorded with an Agilent 6530 LC Q-TOF. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Bruker NMR spectrometer operating at $600 \mathrm{MHz}\left(150 \mathrm{MHz}\right.$ for $\left.{ }^{13} \mathrm{C}\right)$ and $200 \mathrm{MHz}\left(50 \mathrm{MHz}\right.$ for ${ }^{13} \mathrm{C}$) using the solvent peak as the internal reference $\left(\mathrm{CDCl}_{3}, \delta_{\mathrm{H}}=7.26\right.$ $\left.\mathrm{ppm} ; \delta_{\mathrm{C}}=77.0 \mathrm{ppm}\right)$. Data are reported in the following order: chemical shift (δ, ppm), multiplicities and coupling constants (J, Hz). Column chromatography was carried out by using 100-200 mesh particle size silica gel. All reactions were monitored by thin-layer chromatography (TLC) using silica gel F_{254} pre-coated plates. Visualization was accomplished with UV-light and I_{2} staining. Solvents for column chromatography (EtOAc, n-hexane) were technical grade and distilled prior to use. Organic extracts were dried over anhydrous MgSO_{4}.

Allyl Benzyl Ether 8

To a suspension of $\mathrm{NaH}(0.155 \mathrm{~g}, 6.48 \mathrm{mmol})$ in anhydrous THF (25 mL) a solution of $7(0.250 \mathrm{~g}, 4.31 \mathrm{mmol})$ in anhydrous THF (10 mL) was added dropwise at $0^{\circ} \mathrm{C}$ under nitrogen. After stirring for 30 min , benzyl bromide ($0.62 \mathrm{~mL}, 5.17 \mathrm{mmol}$) was added slowly dropwise and the reaction mixture was stirred at r.t. for 4 h . After completion of the reaction, the reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ at 0 ${ }^{\circ} \mathrm{C}$ and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with water $(2 \times 20 \mathrm{~mL})$ and brine solution (10 mL), and dried over anhydrous MgSO_{4}. After filtration, the solvent was removed under reduced pressure. The crude product was purified by column chromatography to afford compound 8 .
Yield: 0.624 g (98\%); pale-yellow liquid; $R_{f}=0.78$ (hexane/EtOAc, 9:1). IR (KBr): 2854, 1495, 1453, 1227, 1067, 1027, 919, 735, $694 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H})$, 5.94 (ddt, $J=17.2,10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (dq, $J=17.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.19 (dq, $J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.02(\mathrm{dt}, J=5.6,1.5 \mathrm{~Hz}, 2$ H).
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.3,134.7,128.4,127.7,127.6$, 117.1, 72.1, 71.1.

HRMS (ESI ${ }^{+}$): $\mathrm{m} / \mathrm{z}\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}$: 148.1139; found: 148.1137; $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}$: 149.1156 ; found: 149.1158 .

4-(3-Benzyloxypropyl)-2-methoxyphenol (4)

To compound $\mathbf{8}(0.300 \mathrm{~g}, 2.02 \mathrm{mmol})$ in anhydrous $\mathrm{THF}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under nitrogen was added 9-BBN (0.5 M in THF, $4.85 \mathrm{~mL}, 2.42 \mathrm{mmol}$) dropwise. The reaction mixture was warmed to r.t. and stirred for 2 h . The flask was covered with foil and aq. $\mathrm{NaOH}(3 \mathrm{M}, 2.02 \mathrm{~mL})$ was slowly added at $0{ }^{\circ} \mathrm{C}$ (CARE: H_{2} evolution) and then flushed for 10-15 min with nitrogen. A solution of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.040 \mathrm{~g}, 0.034 \mathrm{mmol})$ in anhydrous THF (15 mL) was added, and then a solution of 4-bromo-2methoxyphenol ($\mathbf{6} ; 0.451 \mathrm{~g}, 2.22 \mathrm{mmol}$) in anhydrous THF was added dropwise to the reaction mixture at $0^{\circ} \mathrm{C}$ under nitrogen. The reaction mixture was heated to reflux for 12 h . After completion of the reaction, as monitored by TLC, the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ at $0^{\circ} \mathrm{C}$. The crude reaction product was dissolved in THF (3 mL , 0.2 mmol of alkene) and aqueous $\mathrm{NaOH}(1 \mathrm{M}, 1 \mathrm{~mL}, 0.2 \mathrm{mmol}$ of alkene) was added, followed by aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(60 \% \mathrm{w} / \mathrm{v}, 0.2 \mathrm{mmol}$: 0.2 mmol of alkene) and the mixture was stirred vigorously for 10-15 minutes at $0^{\circ} \mathrm{C}$. The residue was filtered and extracted with ether ($3 \times$ 10 mL). The combined organic extracts were washed with water ($2 \times$ 20 mL) and brine (10 mL), filtered, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The crude product, was purified by column chromatography to afford compound 4.
Yield: $0.473 \mathrm{~g}(86 \%)$; pale-brown liquid; $R_{f}=0.56$ (hexane/EtOAc, 9:1). IR (KBr): 3332, 2940, 2830, 1495, 1446, 1397, 1250, 1220, 1181, 1132, $840,769 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.33(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.27(\mathrm{ddd}, J=$ $8.8,4.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.64(\mathrm{~m}, 2 \mathrm{H}), 5.43$ (brs, 1 H), $4.49(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.63$ (dd, $J=8.6,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.87(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=146.3,143.6,138.6,133.9,128.4$, $127.7,127.5,121.0,114.1,111.0,73.0,69.5,55.8,32.1,31.7$.
HRMS (ESI ${ }^{+}$): $m / z\left[M+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{3}$: 273.1506; found: 273.1508.

(R)-Ethyl 2-(4-(3-(Benzyloxy)propyl)-2-methoxyphenoxy)propanoate (3)

A mixture of $5(0.150 \mathrm{~g}, 1.27 \mathrm{mmol}), \mathbf{4}(0.415 \mathrm{~g}, 1.52 \mathrm{mmol})$, triphenylphosphine ($0.432 \mathrm{~g}, 1.65 \mathrm{mmol}$), and DIAD ($0.33 \mathrm{~mL}, 1.65 \mathrm{mmol}$) in anhydrous THF (15 mL) was heated to reflux for 24 h under nitrogen. After completion of the reaction, as monitored by TLC, the mixture was cooled to $0^{\circ} \mathrm{C}$, the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with water ($2 \times 20 \mathrm{~mL}$), brine (10 mL), dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by column chromatography to afford compound 3.
Yield: 0.415 g (88%); pale-brown liquid; $R_{f}=0.60$ (hexane/EtOAc, 9:1); $[\alpha]_{D}^{22}=+0.94\left(c=0.016, \mathrm{CHCl}_{3}\right)$.
IR (KBr): 2984, 1734, 1589, 1493, 1444, 1396, 1250, 1195, 1179, 1046, $849,783 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.33(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1$ H), 6.75 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $6.70(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63$ (dd, $J=8.1,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.68(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{qd}, J=$ $7.1,4.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.81 ($\mathrm{s}, 3 \mathrm{H}$), 3.46 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.65-2.62 (m, 2 H), 1.91-1.87 (m, 2 H), $1.60(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

	THIEME	
SynOpen	S. K. Avula et al.	OPEN ACCESS

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.4,149.9,145.1,138.6,136.6$, $128.4,127.6,127.5,120.3,116.4,112.7,74.4,73.0,69.5,61.0,55.9$, 32.0, 31.5, 18.6, 14.1 .

HRMS (ESI ${ }^{+}$): $m / z\left[M+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{5}: 373.1314$; found: 373.1312.

(2R)-2-(4-(3-(Benzyloxy)propyl)-2-methoxyphenoxy)-1-(3,4,5-tri-methoxyphenyl)propan-1-ol (9)

To a stirred solution of ester $3(0.160 \mathrm{~g}, 0.43 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, DIBAL-H (1 M in THF, $0.64 \mathrm{~mL}, 0.64 \mathrm{mmol}$) was added dropwise at $-78{ }^{\circ} \mathrm{C}$ under nitrogen and the reaction mixture was stirred for 30 min . The reaction was quenched with $2 \mathrm{M} \mathrm{HCl}(8 \mathrm{~mL})$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic extracts were washed with water ($2 \times 20 \mathrm{~mL}$), and brine (10 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The aldehyde ($0.128 \mathrm{~g}, 0.38 \mathrm{mmol}$) thus obtained as a colourless oil was immediately used after flash column chromatography for the subsequent reaction.
To a stirred solution of the aldehyde ($0.128 \mathrm{~g}, 0.38 \mathrm{mmol}$) from the preceding step in anhydrous THF (10 mL), 3,4,5-trimethoxyphenyl magnesium bromide (0.5 M in THF, $1.80 \mathrm{~mL}, 0.90 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$ under nitrogen and the reaction mixture was stirred at r.t. for 19 h . After completion of the reaction, as monitored by TLC, the mixture was cooled to $0^{\circ} \mathrm{C}$, the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 25 \mathrm{~mL})$. The combined organic extracts were washed with water $(2 \times 20 \mathrm{~mL})$, brine (10 mL), dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo to obtain a brown gum (0.164 g) that was presumed to be a mixture of syn- and anti-diastereomers of $\mathbf{9}$ (as evident from the next reaction) along with starting materials. We proceeded with the next step with this crude material.

Surinamensinols A (1) and B (2)

To a stirred solution of crude compound $9(0.082 \mathrm{~g})$ in anhydrous EtOAc (5 mL) was added a catalytic amount of Pd/C (10\%) and the reaction mixture was stirred at r.t. under hydrogen for 2 h . After completion of the reaction, as monitored by TLC, the mixture was filtered, washed with $\operatorname{EtOAc}(3 \times 10 \mathrm{~mL})$ and the filtrate was concentrated under reduced pressure to furnish a gum. This was purified by silica gel column chromatography, using hexane and EtOAc as eluent, to afford $\mathbf{1}(0.018 \mathrm{~g})$ and $\mathbf{2}(0.027 \mathrm{~g})$. The combined yields of $\mathbf{1}$ and $\mathbf{2}$ were 49% from compound $\mathbf{3}$ and the overall yield from the whole sequence of $\mathbf{1}$ was 14% and that of 2 was 22%.

Surinamensinol A (1)

$R_{f}=0.30$ (hexane/EtOAc, 3:2); $[\alpha]_{D}^{22}=-60.5\left(c=1.0, \mathrm{CHCl}_{3} ; 95 \%\right.$ ee $)$. IR (KBr): 3432, 2927, 2845, 1459, 1233, $1125 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 2 \mathrm{H}), 4.62(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 9 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.63(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=153.3,150.7,146.2,145.3,138.2,137.3$, 135.2, 121.1, 119.3, 112.2, 104.7, 83.3, 77.5, 62.2, 56.2, 34.3, 32.1, 17.0.

HRMS (ESI ${ }^{+}$): $m / z\left[M+\mathrm{Na}^{+}\right]$calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{Na}$: 429.1994; found: 429.1992.

Surinamensinol B (2)

$R_{f}=0.24$ (hexane/EtOAc, 3:2); $[\alpha]_{\mathrm{D}}{ }^{25}=-11.4\left(c=0.2, \mathrm{CH}_{3} \mathrm{OH} ; 96 \% e e\right)$. IR (KBr): 3389, 2952, 1601, 1510, 1278, $1036 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.76$ (dd, $J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 2 \mathrm{H}), 4.80(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.35(\mathrm{dq}, J=6.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 3.83(\mathrm{~s}, 3$ H), $3.68(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{~m}, 2 \mathrm{H}), 1.17$ (d, J=6.5 Hz, 3 H).
${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=153.1,151.0,144.5,137.3,135.9,121.0$, $119.3,112.5,103.4,82.1,73.8,62.0,60.8,56.1,55.8,34.4,31.6,13.2$.
HRMS: $m / z\left[M+\mathrm{Na}^{+}\right]$calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{Na}: 429.1990$; found: 429.1992.

Funding Information

The authors would like to thank the University of Nizwa for the generous support of this project.

Acknowledgment

We thank the technical and analytical staff of the University of Nizwa for assistance.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707325.

References

(1) Ward, R. S. Nat. Prod. Rep. 1999, 16, 75.
(2) Ma, C.; Zhang, H. J.; Tan, G. T.; Hung, N. V.; Cuong, N. M.; Soejarto, D. D.; Fong, H. H. S. J. Nat. Prod. 2006, 69, 346.
(3) Saleem, M.; Kim, H. J.; Ali, M. S.; Lee, Y. S. Nat. Prod. Rep. 2005, 22, 696.
(4) Apers, S.; Vlietinck, A.; Pieters, L. Phytochem. Rev. 2003, 2, 201.
(5) Zhang, H. J.; Tamez, P. A.; Hoang, V. D.; Tan, G. T.; Hung, N. V.; Xuan, L. T.; Huong, L. M.; Cuong, N. M.; Thao, D. T.; Soejarto, D. D.; Fong, H. H.; Pezzuto, J. M. J. Nat. Prod. 2001, 64, 772.
(6) Alves, C. N.; Barroso, L. P.; Santos, L. S.; Jardim, I. N. J. Braz. Chem. Soc. 1998, 9, 577.
(7) Barata, L. E. S.; Santos, L. S.; Ferri, P. H.; Phillipson, J. D.; Paine, A.; Croft, S. L. Phytochemistry 2000, 55, 589.
(8) Aveniente, M.; Pinto, E. F.; Santos, L. S.; Rossi-Bergmann, B.; Barata, L. E. S. Bioorg. Med. Chem. 2007, 15, 7337.
(9) Kim, K. H.; Moon, E.; Kim, H. K.; Oh, J. Y.; Kim, S. Y.; Choi, S. U.; Lee, K. R. Bioorg. Med. Chem. Lett. 2012, 22, 6155.
(10) Avula, S. K.; Khan, A.; Rehman, N. U.; Anwar, M. U.; Al-Abri, Z.; Wadood, A.; Riaz, M.; Csuk, R.; Al-Harrasi, A. Bioorg. Chem. 2018, 81, 98.
(11) Avula, S. K.; Khan, A.; Halim, S. A.; Al-Abri, Z.; Anwar, M. U.; AlRawahi, A.; Csuk, R.; Al-Harrasi, A. Bioorg. Chem. 2019, 91, 103182.
(12) Reddy, P. R.; Das, B. RSC Adv. 2014, 4, 7432.
(13) Lalwani, K. G.; Sudalai, A. Eur. J. Org. Chem. 2015, 7344.
(14) Collier, P. N.; Campbell, A. D.; Patel, I.; Taylor, R. J. K. Tetrahedron 2002, 58, 6117.

SynOpen \quad S. K. Avula et al. \begin{tabular}{l}
THIEME

OPEN

ACCESS

\quad

Paper

\hline
\end{tabular}

(15) Matos, K.; Soderquist, J. A. J. Org. Chem. 1998, 63, 461.
(16) Ramachandran, P. V.; Chandra, J. S.; Reddy, M. V. R. J. Org. Chem. 2002, 67, 7547.
(17) Mistunobu, O.; Yamada, M. Bull. Chem. Soc. Jpn. 1967, 40, 2380.
(18) Pilkington, L. I.; Barker, D. J. Org. Chem. 2012, 77, 8156.
(19) Chavan, S. P.; Praveen, C. Tetrahedron Lett. 2005, 46, 1939.

