Synthesis 2020; 52(22): 3406-3414
DOI: 10.1055/s-0040-1707859
special topic
© Georg Thieme Verlag Stuttgart · New York

Practical Early Development Synthesis of Nav1.7 Inhibitor GDC-0310

Andreas Stumpf
Department of Small Molecule Process Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA   Email: Stumpf.andreas@gene.com   Email: Stjean.frederic@gene.com
,
Department of Small Molecule Process Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA   Email: Stumpf.andreas@gene.com   Email: Stjean.frederic@gene.com
,
David Lao
,
Zhigang Ken Cheng
,
Remy Angelaud
,
Francis Gosselin
› Author Affiliations
Further Information

Publication History

Received: 18 April 2020

Accepted after revision: 12 May 2020

Publication Date:
22 June 2020 (online)


Published as part of the Special Topic Synthesis in Industry

Abstract

The concise early development route to the Nav1.7 inhibitor GDC-0310 is described. The active pharmaceutical ingredient (API) contains one stereocenter, which was obtained with high enantiomeric excess (>99:1) by using an SN2 displacement approach to connect two intermediates: a chiral benzyl alcohol and a piperidine. The synthesis of the piperidine building block proceeded via a regioselective SNAr reaction on 1-chloro-2,4-difluorobenzene by N-Boc-4-piperidinemethanol, followed by installation of the methyl ester group by electrophilic aromatic bromination and a palladium-catalyzed alkoxycarbonylation. A subsequent Suzuki–Miyaura cross-coupling reaction was then telescoped directly into cleavage of the Boc group to provide the advanced piperidine intermediate. The key feature of the synthesis is the highly selective SN2 displacement of the chiral mesylate of (R)-1-(3,5-dichlorophenyl)ethan-1-ol with the piperidine intermediate, followed by a chiral purity upgrade via the corresponding (1S)-(+)-camphorsulfonic acid salt. After standard hydrolysis of the methyl ester and CDI mediated amidation to couple the resulting acid with methanesulfonamide, enantiomerically pure GDC-0310 was obtained in high overall yield (37%) on a 6.5 kilogram scale.

Supporting Information

 
  • References

    • 1a Wood JN, Boorman JP, Okuse K, Baker MD. J. Neurobiol. 2004; 61: 55
    • 1b Gold MS, Gebhart GF. Nat. Rev. Med. 2010; 16: 1248
    • 2a Emery EC, Luiz AP, Wood JN. Expert Opin. Ther. Targets 2016; 20: 975
    • 2b Weiss MM, Dineen TA, Marx IE, Altmann S, Boezio A, Bregman H, Chu-Moyer M, DiMauro EF, Bojic EF, Foti RS, Gao H, Graceffa R, Gunaydin H, Guzman-Perez A, Huang H, Huang L, Jarosh M, Kornecook T, Kreiman CR, Ligutti J, La DS, Lin M.-HJ, Liu D, Moyer BD, Nguyen HN, Peterson EA, Rose PE, Taborn K, Youngblood BD, Yu V, Fremeau RT. J. Med. Chem. 2017; 60: 5969
    • 2c Graceffa RF, Boezio AA, Able J, Altmann SM, Berry L, Boezio C, Butler JR, Chu-Moyer M, Cooke M, DiMauro EF, Dineen TA, Bojic EF, Foti RS, Fremeau RT, Guzman-Perez A, Gao H, Gunaydin H, Huang H, Huang L, Ilch C, Jarosh M, Kornecook T, Kreiman CR, La DS, Ligutti J, Milgram BC, Lin M.-HJ, Marx IE, Nguyen HN, Peterson EA, Rescourio G, Roberts J, Schenkel L, Shimanovich R, Sparling BA, Stellwagen J, Taborn K, Vaida KR, Wang J, Yeoman J, Yu V, Zhu D, Moyer BD, Weiss MM. J. Med. Chem. 2017; 60: 5990
    • 2d McKerrall AJ, Nguyen T, Lai KW, Bergeron P, Deng L, DiPasquale A, Chang JH, Chen J, Chernov-Rogan T, Hackos DH, Maher J, Ortwine DF, Pang J, Payandeh J, Proctor WR, Shields SD, Vogt J, Ji P, Liu W, Ballini E, Schumann L, Tarozzo G, Bankar G, Chowdhury S, Hasan A, Johnson Jr JP, Khakh K, Lin S, Cohen CJ, Dehnhardt CM, Safina BS, Sutherlin DP. J. Med. Chem. 2019; 62: 4091
    • 2e On Nav1.7 inhibitors for the treatment of chronic pain, see: McKerrall SJ, Sutherlin DP. Bioorg. Med. Chem. Lett. 2018; 28: 3141
    • 2f Chernov-Rogan T, Li T, Lu G, Verschoof H, Khakh K, Jones SW, Beresini MH, Liu C, Ortwine DF, McKerrall SJ, Hackos DH, Sutherlin DP, Cohen CJ, Chen J. Proc. Natl. Acad. Sci. U.S.A. 2018; 115: E792
    • 2g King GF, Vetter I. ACS Chem. Neurosci. 2014; 5: 749
    • 2h Browne L, Lidster K, Al-Izki S, Clutterbuck L, Posada C, Chan AW. E, Riddall D, Garthwaite J, Baker D, Selwood DL. J. Med. Chem. 2014; 57: 2942
    • 2i Swain NA, Batchelor D, Beaudoin S, Bechle BM, Bradley PA, Brown AD, Brown B, Butcher KJ, Butt RP, Chapman ML, Denton S, Ellis D, Galan SR. G, Gaulier SM, Greener BS, de Groot MJ, Glossop MS, Gurrell IK, Hannam JM. S, Lin Z, Markworth CJ, Marron BE, Millan DS, Nakagawa S, Pike A, Printzenhoff D, Rawson DJ, Ransley SJ, Reister SM, Sasaki K, Storer RI, Stupple PA, West CW. J. Med. Chem. 2017; 60: 7029
    • 2j Bagal SK, Brown AD, Cox PJ, Omoto K, Owen RM, Pryde DC, Sidders B, Skerratt SE, Stevens EB, Storer RI, Swain NA. J. Med. Chem. 2013; 56: 593
    • 2k Blass BE. ACS Med. Chem. Lett. 2018; 9: 161
    • 2l Ali SR, Liu Z, Nenov MN, Folorunso O, Singh A, Scala F, Chen H, James TF, Alshammari M, Panova-Elektronova NI, White MA, Zhou J, Laezza F. ACS Chem. Neurosci. 2018; 9: 976
    • 2m de Lera Ruiz M, Kraus RL. J. Med. Chem. 2015; 58: 7093
  • 4 Ouellet SG, Bernardi A, Angelaud R, O’Shea PD. Tetrahedron Lett. 2009; 50: 3776
  • 5 Stumpf A, Cheng ZK, Beaudry D, Angelaud R, Gosselin F. Org. Process Res. Dev. 2019; 23: 1829
    • 6a Grillo M, Li A.-R, Liu J, Medina JC, Su Y, Wang Y, Jona J, Allgeier A, Milne J, Murry J, Payack JF, Storz T. International Patent No. WO200085277A1, 2009
    • 6b Kromann JC, Jensen JH, Kruszyk M, Jessing M, Jorgensen M. Chem. Sci. 2018; 9: 660 ; Predict Regioselectivity of electrophilic aromatic substitution reactions in heteroaromatic systems; http://regiosqm.org/ (accessed June 4, 2020)
  • 7 Addition of a trace amount of water has been shown to improve conversion in the bromination of alkenes using DBH in MeCN; see: Yin Q, You SL. Org. Lett. 2012; 14: 3526
  • 8 A mechanism for the bromination of alkenes using DBH in water has been proposed, such that it is plausible that DBH reacts with water to form HBrO which is the active bromination species; see: Xu S, Wu P, Zhang W. Org. Biomol. Chem. 2016; 14: 11389
  • 9 DBH was added in portions to avoid accumulation of the reagent in the reaction mixture and subsequent increase in the amount of side products.
    • 10a Beller M, Wu X.-F. Transition Metal Catalyzed Carbonylation Reactions: Carbonylative Activation. Springer; Heidelberg: 2013
    • 10b Barnard CF. J. Organometallics 2008; 27: 5402
    • 10c Martinelli JR, Watson DA, Freckmann DM. M, Barder TE, Buchwald SL. J. Org. Chem. 2008; 73: 7102
    • 10d Natte K, Dumrath A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2014; 53: 10090
    • 10e Almeida AM, Andersen TL, Linhardt AT, Almeida MV, Skrydstrup T. J. Org. Chem. 2015; 80: 1920
  • 11 Norit® CAP Super-WJ.
  • 12 Kinzel T, Zhang Y, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 14073