Ruthenium-Catalyzed Lemieux–Johnson-Type Oxidation of Olefins

Significance: The authors report a ruthenium-based catalyst for the Lemieux–Johnson-type oxidation of olefins, providing, after carbon–carbon bond cleavage, the corresponding aldehydes or ketones. The key feature is the designed ruthenium complex which combines a dynamic donor ability, originating from the bisPYA ligand, with highly redox active ruthenium.

Comment: This method outperforms most of the state-of-the-art systems due to the exceptionally efficient ruthenium catalyst. This metal complex can achieve turnover frequencies of 1,000,000 h⁻¹, turnover numbers of several millions and is readily prepared in a four-step synthesis utilizing commercially available starting materials.

Preparation of the ruthenium catalyst:

1. diethyl oxalate (0.5 equiv) 150 °C, 1 h
2. MeI (3.6 equiv) MeCN, reflux, 18 h
3. KPF₆ (2.4 equiv) H₂O, 25 °C, 20 min

Selected examples:

- **1:**
 - **Conversion:** 100%
 - **Selectivity:** 100%

- **2:**
 - **Conversion:** 97%
 - **Selectivity:** 87%

- **3:**
 - **Conversion:** 100%
 - **Selectivity:** 76%

SYNFACTS Contributors: Paul Knochel, Simon Graßl

SYNFACTS 2020, 16(05), 0535 Published online: 20.04.2020 DOI: 10.1055/s-0040-1707931; Reg-No.: P03220SF