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Infections, both bacterial and viral, are associated with a
profound immune response to the infecting pathogen. Plate-
lets are important contributors to themultifaceted response to
infection, where they have the ability to modulate various
immune cells. Platelets engage the immune system through
direct cell-to-cell interaction and through the release of vari-
ous solublemediators.1–5 Furthermore, platelets participate in
the interaction between pathogens and host defense.6–12 In
the absence of platelets, bacteremia, tissue damage, and

mortality are greatly enhanced.13–15 Similarly, thrombocyto-
penia is associated with a dysregulated host response and
worse outcomes in sepsis patients.16,17Platelets are also active
participants in the host response to viruses, and have been
shown to be protective in viral infections.18–20

Platelets possess receptors that allow them to survey for
danger signals from pathogens (pathogen-associated molecu-
lar patterns; PAMPs) and cell damage (damage-associated
molecular patterns; DAMPs), and trigger hemostatic and
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Abstract Thrombocytopenia is commonly associated with sepsis and infections, which in turn
are characterized by a profound immune reaction to the invading pathogen. Platelets
are one of the cellular entities that exert considerable immune, antibacterial, and
antiviral actions, and are therefore active participants in the host response. Platelets
are sensitive to surrounding inflammatory stimuli and contribute to the immune
response by multiple mechanisms, including endowing the endothelium with a
proinflammatory phenotype, enhancing and amplifying leukocyte recruitment and
inflammation, promoting the effector functions of immune cells, and ensuring an
optimal adaptive immune response. During infection, pathogens and their products
influence the platelet response and can even be toxic. However, platelets are able to
sense and engage bacteria and viruses to assist in their removal and destruction.
Platelets greatly contribute to host defense bymultiplemechanisms, including forming
immune complexes and aggregates, shedding their granular content, and internalizing
pathogens and subsequently being marked for removal. These processes, and the
nature of platelet function in general, cause the platelet to be irreversibly consumed in
the execution of its duty. An exaggerated systemic inflammatory response to infection
can drive platelet dysfunction, where platelets are inappropriately activated and face
immunological destruction. While thrombocytopenia may arise by condition-specific
mechanisms that cause an imbalance between platelet production and removal, this
review evaluates a generic large-scale mechanism for platelet depletion as a repercus-
sion of its involvement at the nexus of responses to infection.
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inflammatory responses against bacterial and viral infec-
tions.3,21,22 During infection, the platelet is activated, mobi-
lized, and actively participates in the resultant hemostatic and
inflammatory responses. These signaling processes involve
many feedback loops that self-amplify initial activation,23

and platelets can manifest dysfunction even in cases where
no bacteremia is present.10 These processes are irreversible
and undoubtedly lead to consumption of the platelet. Activa-
tion of platelets leads to their consumption into aggregates
with other platelets, leukocytes, and the endothelium.24 Pla-
telets with bound antibody are targets of phagocytes, and
plateletswith abacterial or viral loadare sequestratedandalso
cleared from the circulation. Further, pathogenic compounds
induce apoptosis and cytotoxic effects in platelets.25 In this
sense, activated platelets and platelets interacting with patho-
gens have shortened survival spans and experience increased
destruction. The outcome for the patient will be a decrease in
normal circulating platelets, and if this manifests widely
enough it can be measured as thrombocytopenia.3,25

Other mechanisms of platelet decline in infection exist and
include the formationofautoantibodies against platelet surface
proteins, which leads to clearance of immunoglobulin G (IgG)-
coated platelets by the reticuloendothelial system,26,27 as well
as by impaired platelet production in the bone marrow,3,6

amongothers.6However, a general viewof platelet destruction
is the simple characteristic that their involvement in throm-
botic, hemostatic, immune, and host defense responses is
irreversible. Even if platelets are positive contributors to the
host response against invading pathogens, they can become
dysfunctional, especially in the context of an excessive and
unbalanced systemic inflammatory response.16,28 Indeed, the
dysfunctional state of thrombocytopenia is commonly associ-
ated with sepsis and infections.3,29–31

The focus of the current review is platelets and their role in
infection. We will examine the interaction of platelets, their
receptors, and secretory product with bacteria and viruses,
and discuss how this may contribute to platelet dysfunction
and ultimately lead to thrombocytopenia.►Fig. 1 provides the

rationale of this review and ►Table 1 lists the abbreviations
used in this article.

Platelet and the Immune Response to
Infections

Acommonfeatureofmany infections,bothviralandbacterial, is
a systemic inflammatory response that involves a dysregulated
proinflammatory biomarker presence in the circulation.3,5,32

Thesebiomarkersmay include cytokines (e.g., interleukins [ILs],
tumor necrosis factor [TNF]-α, and interferons) but also mole-
cules originating from bacteria and viruses themselves (e.g.,
proteases, ribonucleic acid [RNA], and membrane components
like lipopolysaccharide [LPS], lipoteichoic acid [LTA], and viral
glycoproteins). The presence of such circulating biomarkers has
profound agonistic effects on platelets.

Platelets contribute to the thromboinflammatory response
through the plethora of membrane and cytosolic molecules
that they express and release, which possess hemostatic,
immunomodulatory, and inflammatory activity.1–4 Platelets
possess receptors that enable pathogen sensing, and which
allowplatelets to regulate leukocytes and other cells at the site
of infection. During platelet activation, degranulation leads to
thesurface expressionof receptors and thereleaseofabundant
proinflammatory mediators, which contribute to numerous
signaling events.1–5 Platelets also adhere and aggregate to
other platelets and to endothelial cells, leukocytes, and eryth-
rocytes.5,9,24 This response is also characteristic during bacte-
rial and viral infections, and can be induced by pathogens
directly.33 This section describes the role of platelets in the
immune response. See ►Fig. 2 for a general overview of
platelet receptors and secretory products.

Platelet–Endothelium Interactions: Endowing a
Proinflammatory Phenotype
Endothelial activationmarkers are raised during infection, and
are associated with a thrombotic state.34 During activation,
platelets can bind to the endothelium.24 This especially occurs
upon endothelial damage due to trauma ormicrobial coloniza-
tion,35aswell as inviral infections.36Plateletsbecomeactivated
during the adhesion process, and the inflammatory and mito-
genic substances that are released alter the chemotactic, adhe-
sive, and proteolytic properties of endothelial cells.37 Platelet
adhesion therefore endows the endotheliumwith a proinflam-
matory phenotype.24Moreover, platelets that are bound to the
endothelium can form a bridging connection with circulating
leukocytes.24 Overall, these mechanisms amplify and facilitate
leukocyte recruitment and enhance inflammation. ►Fig. 3

provides an overviewof the contact betweenplatelets and cells
at thevascularwall toemphasize the involvementofplatelets in
multiple interactions at the vessel wall.

Platelet–Leukocyte Interactions: Promoting Immune
Cell Effector Functions against Pathogens
Interactions between platelets and leukocytes are important
for the regulation of the immune response and for the clear-
anceof infectiousagents. Bybinding andactivating leukocytes,
platelets promote their effector functions. Coordination of

Fig. 1 Layout of the review. During infection, inflammatory stimuli,
and the presence of bacteria, viruses and their products mobilize
platelets to exert their immune, antibacterial, and antiviral actions.
However, these processes can also lead to platelet dysfunction and
ultimately depletion.
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Table 1 List of abbreviations

Abbreviation Full term Synonyms

αIIbβ3 GPIIb/IIIa

αMβ2 Macrophage-1 antigen CD11b/CD18, CR3; Mac-1

cAMP Cyclic adenosine monophosphate

CAR receptor Coxsackievirus and adenovirus receptor

(s)CD40L (Soluble) CD40 ligand CD154

cGMP Cyclic guanosine monophosphate

CR2 Complement receptor 2 CD21, C3dR

CR3 Complement receptor 3 αMβ2, CD11b/CD18, Mac-1

CR4 Complement receptor 4 αxβ2, CD11c/CD18

DAMP Damage-associated molecular pattern

DNA Deoxyribonucleic acid

Eap Extracellular adherence protein

Efb Extracellular fibrinogen binding protein

FcγRIIa Low affinity immunoglobulin gamma Fc region receptor II-a CD32

GPIb Glycoprotein Ib CD42

GPVI Glycoprotein VI

HIV Human immunodeficiency virus

HLA-DR Human leukocyte antigen—DR isotype

HRgpA Recombinant gingipain R1 protease (high molecular mass form)

Ig Immunoglobulin

IL Interleukin

LCMV Lymphocytic choriomeningitis virus

LPS Lipopolysaccharide

LTA Lipoteichoic acid

MyD88 Myeloid differentiation primary response 88

NET Neutrophil extracellular trap

P-selectin CD62P, GMP-140, PADGEM

PAF Platelet-activating factor

PAMP Pathogen-associated molecular pattern

PAR Protease-activated receptor

PF4 Platelet factor 4 CXCL4

PKG cGMP-dependent protein kinase

PSGL-1 P-selectin glycoprotein ligand-1 CD162

RANTES Regulated on activation, normal T-cell expressed and secreted CCL5

RgpB Recombinant gingipain R2 protease

RNA Ribonucleic acid

ROS Reactive oxygen species

SSL Staphylococcal superantigen-like

TLR Toll-like receptor

TNF Tumor necrosis factor

TREM-1(L) Triggering receptor expressed on myeloid cells 1 (ligand) CD354
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immune cells by platelets ensures a rapid and targeted host
defense response. In a dynamic cross-talk, leukocytes can also
release factors that modulate platelet function.

Platelets adhere to phagocytes and deliver signals that
enhance the killing of internalized pathogens. Platelets are
able to modulate neutrophil responses where they enhance
neutrophil phagocytosis in a process involving toll-like re-
ceptor (TLR) 2 and P-selectin/P-selectin glycoprotein ligand
(PSGL)-1.38 This was demonstrated for both Aggregatibacter
actinomycetemcomitans and Porphyromonas gingivalis.38

Platelets can augment the respiratory burst in neutrophils
in response to opsonized Escherichia coli and Staphylococcus
aureus.39 Platelet–neutrophil complexes havemore activated
adhesion molecules, greater phagocytic ability, and greater
toxic oxygen metabolites than noncomplexed neutrophils.40

Activated platelets can also induce superoxide anion release

by monocytes and neutrophils through P-selectin.41 Soluble
CD40 ligand (CD40L) further interacts with CD40 and αMβ2
on neutrophils to induce the adhesive functions of neutro-
phils as well as cause CD40-dependent reactive oxygen
species (ROS) generation.42

Additionally, the triggering receptor expressed on myeloid
cells (TREM)-1 ligand is expressed on platelets and has been
shown to induce neutrophil activation, and platelets enhance
theneutrophil respiratoryburstandreleaseof IL-8 inaTREM-1-
specific manner in the presence of LPS.43 The TREM-1 receptor
is an important receptor in the innate immune response aswell
as in severe sepsis where it amplifies the immune response to
microbial products.44 TREM-1 has also been shown to contrib-
ute to neutrophil activation in viral infections.45

Furthermore, platelets induce the release of neutrophil
extracellular traps (NETs), deoxyribonucleic acid (DNA) covered
with various antimicrobial nuclear and granule-derived mole-
cules46 that ensnare and kill pathogens, in response to bacterial
(septic) stimuli.39,47,48ThisNETresponsehasbeendocumented
in E. coli gram-negative sepsis and S. aureus gram-positive
sepsis.47 Platelets have further been shown to interact with
neutrophils following viral challenge, leading to the release of
NETs.49–51NETs also deliver antiviral factors such as myeloper-
oxidase46 and α-defensin,50 and capture viruses and promote
their elimination.51 ►Fig. 4 provides an overview of the inter-
actions between platelets and immune cells to emphasize the
involvement of platelets in the immune response.

Platelet Involvement in Adaptive Immunity: Ensuring
an Optimal Adaptive Response
Further to the innate immune response, platelets are also
important for an optimal adaptive immune response. The
periodontopathogens A. actinomycetemcomitans and P. gingi-
valishavebeenshown to induceexpressionofCD40Lonhuman
platelets via TLR2 and TLR4.52 Platelets can modulate B and T
cell responses to microbial pathogens through CD40L, and are
able to induce isotype switching by B cells and augment CD8þ T
cell function.53,54 CD40L on platelets enable T cell priming and
augment CD8þ T cell responses against bacterial pathogens by
enhancing maturation signals to dendritic cells and lowering
the threshold forcell activation55–57 (comparewith reports that
platelets can have an inhibitory effect on dendritic cells58,59).

Platelet-mediated modulation of the adaptive immune sys-
temhas also been shown to enhanceprotection against viral re-
challenge.53 Platelets expressing integrin β3 and CD40L are
essential for lymphocytic choriomeningitis virus (LCMV) clear-
ancebyvirus-specificcytotoxicTcells, andprotect thehost from
virus-induced interferon-α/β lethal hemorrhage.18 Activated
platelets can also contribute to immunopathology (e.g., liver
damage) by accumulating virus-specific cytotoxic T cells at the
site of inflammation in models of acute viral hepatitis.60

Serotonin released from platelets is vasoactive and can further
support viral persistence in the liver by reducing microcircula-
tion, which aggravates virus-induced immunopathology in a
model of LCMV-induced hepatitis.61

Platelets can further shuttle blood-borne gram-positive
bacteria to splenic CD8αþ dendritic cells after the bacterium
becomes associated to platelets via glycoprotein (GP)-Ib and

Fig. 2 General platelet structure. Platelets express various receptors
that allow them to detect danger signals and engage other cells.
Platelets are activated by various agonists that interact with surface
receptors. Platelets are also replete with secretory granules that store
bioactive molecules, which are released into the circulation or
translocate to the surface upon platelet activation. These character-
istics allow platelets to communicate and modulate the functions of
other cells, and trigger hemostatic, inflammatory, and host defense
responses against infections (created with https://biorender.com/).
ADP, adenosine diphosphate; CAR, coxsackievirus and adenovirus
receptor; CCR/CXCR, chemokine receptor; CLEC, C-type lectin-like
receptor; CR, complement receptor; DC-SIGN, dendritic cell-specific
ICAM-grabbing nonintegrin; FcγRIIa, low-affinity immunoglobulin
gamma Fc region receptor II-a; gC1Qr, receptor for the globular heads
of C1q; JAM, junction adhesion molecule; MCP, monocyte chemo-
attractant protein; MHC, major histocompatibility complex; MIP,
macrophage inflammatory protein; PAFR, platelet-activating factor
receptor; PAR, protease-activated receptor; PDGF, platelet-derived
growth factor; PF, platelet factor; RANTES, regulated on activation,
normal T-cell expressed and secreted; TGF, transforming growth
factor; TLR, toll-like receptor; TNSF14, tumor necrosis factor super-
family member 14; TREM, triggering receptor expressed on myeloid
cells; vWF, von Willebrand factor.
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Fig. 3 Platelet interactions at the vascular wall. Platelet activation and adhesion to the vascular wall is facilitated by various receptor interactions with
endothelial cells. An inflamed vessel wall will adopt a prothrombotic phenotype and release platelet binding and stimulating agents. The adhesion of platelets
activatesendothelial cells, andtogetherwithpotent inflammatorymediators releasedbyplatelets induces theexpressionof integrins,adhesionmolecules, and
other receptors on the endothelial surface, as well as causes the endothelium to secrete chemokines and othermediators. Platelets similarly bind and activate
leukocytes, contributing to leukocyte recruitment to the endothelium. In turn, leukocytes are activated and are able to adhere to the inflamed vessel, with
platelets also serving as bridging connections between the endotheliumand circulating leukocytes (createdwith https://biorender.com/). (Adapted from van
Gils et al24.) ADP, adenosine diphosphate; GM-CSF, granulocyte-macrophage colony-stimulating factor; ICAM, intercellular adhesionmolecule; IL, interleukin;
JAM, junction adhesionmolecule;MCP,monocyte chemoattractant protein;MMP,matrixmetalloproteinase;MTP1-MMP,membrane type-1MMP; PF, platelet
factor;PSGL,P-selectinglycoprotein ligand-1; RANTES, regulatedonactivation,normalT-cell expressedandsecreted; ROS, reactiveoxygenspecies; TNSF14(R),
tumor necrosis factor superfamily member 14 (receptor); tPA, tissue plasminogen activator; TREM, triggering receptor expressed on myeloid cells; uPA,
urokinase-type plasminogen activator; uPAR, urokinase receptor; VCAM, vascular cell adhesion protein; vWF, von Willebrand factor.
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complement C3 to balance bacterial clearance with immune
induction.62 Activated platelets also form aggregates with
CD16þ inflammatory monocytes and human leukocyte
antigen (HLA)-DRþ CD38þ memory T cells in human immu-
nodeficiency virus (HIV) infection.7

Platelet-Derived Microparticles: Further Driving the
Inflammatory Response
Activated platelets produce microparticles during bacteri-
al63,64 and viral infection65,66 that contain both soluble (e.g.,
regulated on activation, normal T cell expressed and secreted
[RANTES]) and surface mediators (e.g., P-selectin, GPIb, and
αIIbβ3), which can exit the vasculature and enter tissues

where theyare able to activate leukocytes to further drive the
inflammatory response.67,68 For example, platelet micro-
particles enhance the expression of cell adhesion molecules
such as leukocyte αMβ2 for monocyte adhesion,69 and can
mediate leukocyte activation70 and leukocyte–leukocyte
interactions.71 Microparticles promote platelet interaction
with the endothelium by acting as a substrate for further
platelet binding.72 Further, microparticles can deliver plate-
let-derived CD40L signals54,73 and activate dendritic cells.74

Platelet microparticles also promote endothelial activation
by secreting IL-1β,75 and can deliver RANTES to the endothe-
lium for monocyte recruitment.76 Lastly, these micropar-
ticles can cause complement activation.77

Fig. 4 Platelet interactions with immune cells. Platelets are important contributors to the multifaceted immune response to infection and have
the ability to engage the immune system. Degranulation leads to the surface expression of receptors and the release of abundant
proinflammatory mediators that regulate leukocytes at the site of infection. Platelets also modulate leukocytes involved in adaptive immunity.
Ultimately, platelets promote the effector functions of immune cells and enable an optimal immune response (created with https://biorender.
com/). IL, interleukin; MCP, monocyte chemoattractant protein; MHC, major histocompatibility complex; MIP, macrophage inflammatory
protein; PAF, platelet-activating factor; PDGF, platelet-derived growth factor; PF, platelet factor; RANTES, regulated on activation, normal T-cell
expressed and secreted; ROS, reactive oxygen species; TGF, transforming growth factor; TNF, tumor necrosis factor; Treg, regulatory T cell.
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Platelet Interactions with Bacteria

Platelets are active role players in antimicrobial defense, and
exhibit complex interactionswith bacteria andviruses due to
the variety of platelet receptors involved in pathogen recog-
nition. Platelets are able to recognize, bind, and internalize
pathogens to sequester and neutralize the pathogen. This
section describes the interactions of platelets with bacteria,
which are summarized in ►Fig. 5.

Platelet Receptors in Bacterial Pathogen Sensing
It has long been known that bacteria can cause platelet
aggregation and degranulation.78,79 A diverse range of plate-
let receptors can mediate interactions with bacteria, includ-
ing αIIbβ3, low-affinity immunoglobulin gamma Fc region
receptor II-a (FcγRIIa), GPIb, complement receptors (CRs),
and TLRs,80,81 either directly or indirectly through bridging
molecules.11,12,81 Alternatively, products shed by bacteria82

may cause a platelet response independently of direct

Fig. 5 Platelet interactions with bacteria. Platelets are able to sense and bind bacteria through a variety of platelet receptors, and various bacterial products
stimulate platelets, modulating their function. Platelets typically become activated and aggregate, but bacterial products may exert inhibitory actions or
cause platelet destruction. Platelets additionally mediate antimicrobial actions by releasing microbicidal proteins, engulfing bacteria, and interacting with
immunecells. These interactions further enhance the immune responseand lead toplatelet clearance (createdwithhttps://biorender.com/).C3, complement
component 3; Eap, extracellular adherence protein; Efb, extracellular fibrinogen-binding protein; FcγRIIa, low-affinity immunoglobulin gamma Fc region
receptor II-a; gC1Qr, receptor for the globular heads of C1q; Ig, immunoglobulin; LPS, lipopolysaccharide; LTA, lipoteichoic acid; PAF(R), platelet-activating
factor (receptor); PAR, platelet-activating factor; PLC, phospholipase C; Rgp, recombinant gingipain; ROS, reactive oxygen species; SSL, staphylococcal
superantigen-like; TLR, toll-like receptor; vWF, von Willebrand factor.
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bacterial attachment to the platelet.10 Ultimately, engage-
ment of receptors by bacteria and their products leads to
common and species-specific intracellular signaling events
in platelets.83

►Table 2 summarizes platelet receptors that mediate
binding of bacteria to cause platelet activation and aggrega-
tion. A key mechanism for bacterial adhesion to platelets,
which is described for various bacteria, involves αIIbβ3
integrin activation, the FcγRIIa receptor, and IgG,84 where
platelet factor (PF)-4 may potentiate further binding of
additional bacteria by forming an immunocomplex with
bacteria that bind through FcγRIIa.85

Platelets also express C–Cmotif and C–X–Cmotif chemokine
receptors such as CCR1, CCR2, CCR4, and CXCR4,86 which can
detect all four classes of chemokines (C, CC, CXC, and CX3C).
These receptors allow platelets to recognize and prioritize
chemotactic signals and result in rapid vectoring of platelets
to sites of infection.9 They are also involved in stimulating
platelet adhesion, aggregation, and secretion.87 Additionally,
platelet activation leads to activation of the complement
system,88,89 and platelets also express various complement
receptors after activation such as CR2, CR3, CR4, C3aR, C5aR,
cC1qR, and gC1qR.3 These may therefore serve as potential
receptors for bacteria coatedwith complement factors, and lead
to platelet aggregation.11 Furthermore, an important class of
receptors for pathogen sensing are TLRs, and platelets express
numerous TLRs to detect the molecular features of
microbes.21,90–92 Platelets express, among others, functional
TLR4,93 as well as the accessory component for LPS signaling,
including CD14, MD2, and myeloid differentiation primary
response (MyD)-88.94

Bacterial Products Affect Platelet Functions
Platelets are able to respond to many bacterial products, and
theseproductsmodulateplatelet function.25LPS can stimulate
platelet secretion of dense and α-granules through TLR4/
MyD88 and cyclic guanosine monophosphate (cGMP)/cGMP-
dependent protein kinase (PKG) signaling pathways.94 This
potentiates secretion-dependent integrin activation and
platelet aggregation. Further to this, platelets recognize and
discriminate between various isoforms of bacterial LPS and
secrete differential cytokine profiles against these danger
signals.95,96 LPS also induces sCD40L release from platelets97

as well as ROS generation.98 Some sources of LPS can activate
TLR2,99–101 and this has also been implicated in LPS-induced
cGMP elevation and platelet activation.94 However, LPS is
described as not always generating conventional platelet
activation (e.g., typical P-selectin release from α-granules).25

Bacterial structures from gram-positive bacteria such as lip-
oproteins, peptidoglycan, and LTA are TLR2 ligands, and also
trigger platelet activation.92,102 TLR activation in platelets
induces a thromboinflammatory response, including plate-
let aggregation, formation of platelet–leukocyte complexes,
and ROS generation103 as well as the elaboration of acute-
phase reactants like TNF-α.91 However, studies have shown
mixed effects of TLR2 agonists and LTA on platelet
aggregation.104,105

Platelets can migrate toward the chemotactic signal of
bacterial N-formyl peptide by their receptors for this pep-
tide.106 The gingipain proteases HRgpA and RgpB from
P. gingivalis activate platelet protease-activated receptor
(PAR)-1 and PAR4, leading to platelet aggregation.107,108

S. aureus α-toxin also causes platelet activation and leads to

Table 2 Platelet receptors that mediate bacterial adhesion and platelet activation

Bacteria Bacterial component Platelet receptors/host factors References

Borrelia burgdorferi αIIbβ3 182

Chlamydia pneumoniae αIIbβ3 183

Helicobacter pylori IgG-FcγRIIa, GPIb, vWF 184

Porphyromonas gingivalis Hgp44 GPIb, IgG-FcγRIIa 185

Streptococcus agalactiae FbsA αIIbβ3, fibrinogen, IgG-FcγRIIa 186

Staphylococcus aureus ClfA, ClfB, FnBPA, SdrE, SpA, IsdB αIIbβ3, fibrinogen, fibronectin, IgG-FcγRIIa,
complement gC1qR, thrombospondin, vWF

84,187–201

Staphylococcus epidermidis SdrG αIIbβ3, fibrinogen, IgG- FcγRIIa 202

Streptococcus gordonii PadA, SspA/SspB, GspB/Hsa αIIbβ3, GPIb, IgG-FcγRIIa 84,203–206

Staphylococcus lugdunensis Fbl Fibrinogen 207

Streptococcus mitis PblA, PblB, lysin αIIbβ3, fibrinogen,
membrane ganglioside GD3

208,209

Streptococcus oralis GPIb, IgG-FcγRIIa 84,210

Streptococcus pneumoniae Pav, PspC/Hic αIIbβ3, fibrinogen, IgG-FcγRIIa,
thrombospondin, PAF receptor

84,211–213

Streptococcus pyogenes M protein αIIbβ3, fibrinogen, IgG-FcγRIIa 201,214

Streptococcus sanguis SrpA αIIbβ3, fibrinogen, IgG-FcγRIIa, GPIb 84,215–217

Abbreviations: Clf, clumping factor; FnBPA, fibronectin-binding protein A; IsdB, iron-regulated surface determinant B; PadA, platelet adherence
protein A; PavB, pneumococcal adherence and virulence factor B; PspC, pneumococcal surface protein C; Sdr, serine-aspartate repeat protein; SpA,
staphylococcal protein A; SrpA, serine-rich protein A; Ssp, stringent starvation protein; vWF, von Willebrand factor.
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enhanced prothrombinase activity on the platelet sur-
face.109,110 Staphylococcal superantigen-like (SSL)-5 from S.
aureus additionally induces platelet activation via platelet
receptors GPVI andGPIb,111,112whereas the Panton–Valentine
leukocidin toxin leads to platelet activation via neutrophil
secretion products from damaged neutrophils.113

Another class of exotoxins from S. aureus, extracellular
adherence protein (Eap) and extracellular fibrinogen-bind-
ing protein (Efb) fibrinogen-binding proteins, also interacts
with platelets. On the one hand, Eap enhances αIIbβ3
integrin activation, granule secretion, and aggregation,114

whereas Efb inhibits platelet activation and aggrega-
tion115,116 and has powerful antiplatelet actions.117 Staph-
ylococcus aureus enterotoxin B similarly inhibits platelet
aggregation.118 LTA from S. aureus has also been reported to
inhibit platelet activation through platelet-activating factor
(PAF) receptor and raised cyclic adenosine monophosphate
(cAMP),119 as well as to inhibit platelet aggregation,120–122

but may support platelet adhesion to Staphylococcus epi-
dermidis.123 Additional products released by S. aureus also
have opposing functions on platelet aggregation. While
staphylothrombin mediates fibrin formation that supports
aggregation,124 staphylokinase prevents aggregation by
degrading fibrinogen.125

Bacterial toxins can also cause platelet destruction. For
example, α-toxin from S. aureus and α-hemolysin from
E. coli126 as well as peptidoglycan from S. aureus127 can
induce platelet apoptosis. Indeed, these pore-toxins stimu-
late disturbances in the platelet membrane and can be
cytotoxic.3,128 Escherichia coli Shiga toxin causes downregu-
lation of platelet CD47 expression, which leads to enhanced
platelet activation and phagocytosis of platelets by macro-
phages.129 Toxins such as pneumolysin from Streptococcus
pneumoniae130 and α-toxin from S. aureus131 can cause
platelet lysis, whereas streptolysin O from Streptococcus
pyogenes132 and phospholipase C from Clostridium perfrin-
gens133 induce the formation of platelet–leukocyte
complexes.

Platelets Mediate Antimicrobial Attack
A further function of platelets in bacterial infection is
mediating antimicrobial attack. Platelets mediate some of
their antimicrobial actions through the secretion of potent
antimicrobial proteins from their α-granules.8,35 Moreover,
platelets rapidly form clusters around bacteria that have
been captured by Kupffer cells in the liver sinusoids (special-
ized macrophages in the liver), encasing the bacterium and
facilitating its destruction.13 Further, sCD40L causes in-
creased generation and release of reactive oxygen (e.g.,
superoxide) and nitrogen (e.g., nitric oxide) species by
platelets, which assists in pathogen destruction.134,135

Platelets are able to bind and endocytose/phagocytose
bacteria through engulfing endosome-like vacuoles that are
formed by membrane endocytosis and become the site of
α-granule release for the granular proteins to access the
pathogen.136,137 A mechanism of internalizing bacteria via
the open canalicular system has also been proposed138 (com-
pare with Boukour and Cramer139). Nonetheless, the platelet

FcγRIIa receptorcanbind IgGcomplexesandallowsplatelets to
clear these complexes from the circulation.140 Internalization
of IgG-coated particles results in platelet activation and the
release of RANTES and sCD40L.141 Platelets opsonized by IgG
can be destroyed by Fc-mediated platelet phagocytosis, con-
tributing to the clearance of IgG-containing complexes from
the circulation.142,143Morebroadly, activated platelets expose
phosphatidylserine, and neutrophils have been shown to
phagocytose activated platelets in a clearance program involv-
ing phosphatidylserine and P-selectin.144–146

Platelet Interactions with Viruses

Viruses have been observed to interact directly with platelets.
Various viruses have been identified adsorbed to or inside
platelets, including influenza virus,147,148 HIV,136,149,150 hepa-
titis C,151–153 andherpes simplexvirus154aswell as others such
as vaccinia virus155 and dengue virus.156–158 However, the
interactions between viruses and platelets are less well charac-
terized compared with those of gram-positive bacteria. This
section describes the interaction of platelets with viruses,
which are summarized in ►Fig. 6.

Platelet Receptors in Viral Pathogen Sensing
Several platelet receptors have been identified to mediate
binding to viral particles,6,7,30,159 and are summarized
in ►Table 3. Similarly to bacteria, IgG is important for the
adhesion of viral particles to platelets, where IgG-coated
particles can interact with the FcγRIIa receptor151,160–162 to
be internalized into the platelet.140 However, other anti-
body-dependent mechanisms that enhance viral binding to
platelets are also described,156 and platelets can further bind
viruses in a receptor-independent manner.163 For example,
although the coxsackievirus and adenovirus receptor (CAR)
is expressed on platelets, coxsackie B virus interaction with
platelets has also been described independently of CAR and
can result in P-selectin and phosphatidylserine exposure.163

More broadly, β3 integrins are important platelet-adhesion
receptors, and these receptors appear to facilitate viral
adhesion to platelets.18,65,164 Even though various receptors
that are expressed on platelets have been implicated in viral
adhesion and cell entry, the direct effect of this interaction on
the platelet has not always been described.

Platelets can also detect viruses through TLRs. Platelet
TLR2 can bind cytomegalovirus, which triggers platelet
activation, degranulation, and the formation of platelet–
leukocyte aggregates.165 TLR7 recognizes the classical viral
PAMP, single-stranded RNA.92 Platelets express functional
TLR7, and activation via TLR7 leads to expression of CD40L
and P-selectin, and P-selectin supports the adhesion of
virally activated platelets to neutrophils.22,166 Moreover,
platelet TLR7 mediates complement C3 release from plate-
lets, which in turn leads to platelet–neutrophil aggregation
and NET release by neutrophils.167 Encephalomyocarditis
virus has been shown to interact with platelet TLR7.166

Platelet TLR9 recognizes unmethylated CpG islands found
in bacterial and viral DNA, which also leads to P-selectin
surface expression.92,168
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Viral Products Affect Platelet Functions
Viruses secrete various products that modulate platelet
function. The secreted HIV Tat protein directly interacts
with platelets in a process requiring the platelet receptors
CCR3 and β3 integrin as well as calcium influx. This leads to
platelet activation and CD40L expression as well as micro-
particle formation.65 Indeed, platelet activation persists even
in virologically suppressed HIV infection.169 Viral enzymes
such as neuraminidase can cause desialylation of platelet
surface receptors,6 and desialylation might promote platelet
clearance in the liver.170,171

Platelets Mediate Antiviral Attack
The secretory products of platelets can also exert virucidal
effects, including the inactivation of adenovirus, poliovirus and
vaccinia virus,172 and HIV suppression.20 Moreover, platelets
exhibit phagocyticbehavior towardviruses suchasHIVandcan
form engulfing vacuoles that lead to granular components
being secreted on the virus particle, as described for bacte-
ria.136 Indeed, intact HIV-1 particles enclosed in endocytic
vesicles have been found in the open canalicular system.173,174

Recently, it has been proposed that platelets may also poten-
tially phagocytose influenza virus.175,176 Platelets may then

Fig. 6 Platelet interactions with viruses. Various platelet receptors can mediate binding to viral particles; however, the direct effect of this binding on
platelets is less well described than for bacteria. Pattern recognition receptors recognize classical viral signals, and viral products also modulate platelet
function. Platelets mediate viral attack by secreting virucidal proteins and by engulfing viral particles, as well as by interacting with immune cells and
enhancing the immune response. Overall, platelets may be activated and aggregate, but also face apoptosis. Virus–platelet aggregates and platelets with a
viral loadare targetedby leukocytes, andplatelets are ultimately cleared fromthecirculation (createdwithhttps://biorender.com/).CAR, coxsackievirus and
adenovirus receptor; CCR/CXCR, chemokine receptor; CLEC, C-type lectin-like receptor; CR, complement receptor; DC-SIGN, dendritic cell-specific ICAM-
grabbing nonintegrin; FcγRIIa, low-affinity immunoglobulin gamma Fc region receptor II-a; HIV, human immunodeficiency virus; Ig, immunoglobulin; RNA,
ribonucleic acid; ROS, reactive oxygen species; Tat, trans-activator of transcription; TLR, toll-like receptor; vWF, von Willebrand factor.
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cause disruption of viral integrity.174 Overall, it has been
suggested that internalization of viral particles by platelets
may function to clear viruses from the circulation.177

Viruses can cause the expression of P-selectin and phos-
phatidylserine exposure on platelets, and these components
promote interactionswith leukocytes aswell as lead to phago-
cytosis of the platelet.163,178 Interaction between platelets and
viruses can also lead to sequestration to the reticuloendothelial
system of the liver, where virus–platelet aggregates can be
takenupbyKupffercells anddegraded.179Spleenmacrophages
also assist in clearing platelets with a viral load.30

Conclusion

Platelets are among the first cells to accumulate at sites of
infection and inflammation, and can be considered as first
responders to invading pathogens. Here, platelets have a key
role in sensing and effecting the first wave of responses to
microbial and viral threat.8,9 This is achieved by the inflam-
matory activity of platelets but also through direct antibac-
terial and antiviral actions that facilitate the clearance of
pathogens from the circulation. Platelets are therefore rep-
resented at the interface of hemostasis, inflammation, and
antimicrobial host defense. Their position at the crossroads
of these processes emphasizes their role as signaling entities
in infection and inflammation.

Various stimuli that are relevant to infection impinge on
platelets, activating and forcing them to exert their effector
actions. Recursive stimulation of activation receptors and

successive activation of bystander platelets intensify the host-
defense functions of platelets even at threshold stoichiometric
ratios of platelets to pathogens.180 Platelets face inappropriate
activation and immunological destruction, and are inevitably
consumed by their participation in host defense. An inflamma-
tory milieu can thereby drive platelet dysfunction. In this
review, we emphasize that platelet dysfunction can arise as a
general consequence of an exaggerated systemic (immune)
response to infection. Increased platelet consumption and
removal can lead to thrombocytopenia, which is frequently
observed during infection. ►Fig. 7 summarizes and links
together the various processes we have discussed, to show a
general mechanism of platelet depletion during infection.

Because of their largely protective role, lower platelet
counts are associatedwith worse prognosis and greater likeli-
hood of infection; however, platelets are also presented as
having an ambivalent role in infections by possibly sheltering
pathogens in certain cases.6,7,9,12,30,181 Nonetheless, in the
context of impairment of the immune system, the functions of
platelets becomemore important. Following the contribution
of platelets to diverse immunological processes, dysregulation
of platelet–leukocyte interactions, which are important for
inflammatory and immune reactions, together with dysregu-
lation of inflammatory mediators, establish an excessive and
unbalanced systemic inflammatory response. In this context,
platelets can contribute to pathophysiological processes and
immunopathology, and become dysfunctional.

Achieving a balance between pro- and anti-inflamma-
tory responses during infection is difficult to manipulate

Table 3 Platelet receptors that mediate viral binding

Virus Viral component Platelet receptors/host factors Effect on platelet References

Adenoviruses Penton base
(RGD ligand site)

Fibrinogen, laminin, vitronectin
and vWF, αIIβ3, αvβ3,
CAR receptor

Platelet activation,
platelet–leukocyte
aggregate formation

30,218–221

Dengue virus DC-SIGN Platelet activation,
platelet apoptosis

178,222,223

Ebola virus DC-SIGN 224

Enterovirus echovirus
9 strain Barty

VP1 capsid protein
(RGD ligand site)

αvβ3 225

Epstein–Barr virus CR2 Platelet activation 226

Hantaviruses αIIβ3, αvβ3 227

Hepatitis C virus GPVI 228

HIV Mannose-type
carbohydrates

CXCR4, DC-SIGN, CLEC2 174,229,230

Herpes simplex virus-1 αvβ3 231

Human parechovirus-1 VP1 capsid protein
(RGD ligand site)

αvβ3 232

Lassa virus DC-SIGN, Axl, Tyro3 233

Rotavirus Spike protein VP4
(DGE ligand site)

α2β1 234,235

Abbreviations: CLEC2, C-type lectin-like receptor 2; DC-SIGN, dendritic cell-specific ICAM-grabbing nonintegrin; DGE, Asp-Gly-Glu tripeptide; HIV,
human immunodeficiency virus; RGD, Arg-Gly-Asp tripeptide; VP, viral (capsid) protein; vWF, von Willebrand factor.
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effectively in a therapeutic context. Following from the
diverse functions of platelets in infections, platelets are
also placed at an interface between health and disease.
Platelets are acutely affected by the surrounding environ-
ment. This, together with other characteristics of platelets
such as their fast turnover, might position platelets as
relevant signaling entities with clinical potential in disease
tracking and targeting to evaluate or manage the course of
infections. Although platelets are perhaps a lesser-known
participant in the host-defense system, their large-scale
depletion may cause significant health issues. Managing a
generic depletion of platelets during the presence of infec-
tion should possibly be a more actively pursued clinical
goal. The key points encapsulating the main ideas of this
review are presented in ►Table 4.

Fig. 7 A generic large-scale cause for platelet dysfunction and depletion in infection. Platelets are intimately involved in the immune and host
defense response to infection, where various stimuli challenge the platelet. Platelets operate in close connection with other cells and processes.
Platelets are cells of one-time use, and their involvement in the diverse and interconnected processes against infection leads to their irreversible
consumption. In the context of abundant stimulation, inappropriate and excessive activation of platelets results in their expenditure and
exhaustion (created with https://biorender.com/). (Adapted from Yeaman.9) DAMP, damage-associated molecular pattern; NET, neutrophil
extracellular trap; PAMP, pathogen-associated molecular pattern.

Table 4 Key points

• Platelets are versatile cells positioned at the interface of
hemostasis, inflammation, and antimicrobial host
defense, and their immune, antibacterial, and antiviral
actions establish them as active participants in infection.

• By nature of their normal functioning, platelets are
invariably and irreversibly expended in the processes to
which they contribute.

• During infection, an onslaught of inflammatory and
pathogen-derived stimuli can evoke and challenge
platelets, leading to inappropriate activation, immuno-
logical destruction, and sequestration.

• In the context of a dysregulated host response to infec-
tion, platelets can experience overwhelming activation
and, consequently, consumption, and this represents a
generic large-scale mechanism for platelet depletion in
infection.
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