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Cell replacement therapy holds a promising future in the treatment of degenerative diseases related to 
neuronal, cardiac and bone tissues. In such kind of diseases, there is a progressive loss of specific types 
of cells. Currently the most upcoming and trusted cell candidate is Mesenchymal Stem Cells (MSCs) as 
these cells are easy to isolate from the tissue, easy to maintain and expand and no ethical concerns are 
linked. MSCs can be obtained from a number of sources like bone marrow, umbilical cord blood, 
umbilical cord, dental pulp, adipose tissues, etc. MSCs help in tissue repair and regeneration by various 
mechanisms of action like cell differentiation, immunomodulation, paracrine effect, etc. The future of 
regenerative medicine lies in tissue engineering and exploiting various properties to yield maximum 
output. In the current review article, we have targeted the repair and regeneration mechanisms of MSCs 
in neurodegenerative diseases, cardiac diseases and those related to bones. Yet there is a lot to 
understand, discover and then understand again about the molecular mechanisms of MSCs and then 
applying this knowledge in developing the therapy to get maximum repair and regeneration of 
concerned tissue and in turn the recovery of the patient.  

Keywords: Differentiation, immunomodulation, exosomes, tissue engineering.

ABSTRACT

Introduction

 Mesenchymal Stem Cells (MSCs) hold 
enormous potential in the management of tissue 
degeneration related to neuronal or cardiac or 
bone tissues of the human body. Their tissue 
regenerative potential has been explored in 
detail by various research groups. Also several 
investigators have studied their mechanisms of 
action pertaining to their effect in tissue repair 
and regeneration.

 The evidence for the presence of stem cell 

population in the bone marrow (BM) that has the 
capacity to produce non-hematopoietic progeny 
emerged in the mid-1960's, after the pioneering 
work of Friedenstein et al (1-3). This group 
characterized BM derived cells of mesenchymal 
origin (hence called Mesenchymal Stromal/ 
Stem Cells) which are the plastic adherent cells, 
immunologically naive and are capable of 
forming clonal fibroblast colony (CFU-f). These 
workers also described a fundamental technique 
of isolation of BM-MSCs by simply plating bone 
marrow with suitable medium onto culture dish 
and discarding supernatant (non-adherent 
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hematopoietic cells). After 24 hrs, only adhered 
cells are left (3, 4). Along with these findings, 
several independent studies proved the 
multipotent characteristic of MSCs and their 
capacity to differentiate into cells of mesodermal 
l ineage ,  inc lud ing  os teob las t s  (5 -9 ) , 
chondroblasts (5, 10, 11), adipocytes (7, 12) and 
myoblasts (13). Therefore, to characterize 
MSCs, they need to have multipotent capability 
to differentiate into osteoblasts, chondroblasts 
and adipocytes and should bear a defined set of 
markers like CD105, CD90, CD73, CD29 and 
negative for HLA class II, CD34, CD45 (14).

 MSCs are unique type of stem cells that 
have capability of differentiating into different 
cell types and can rescue or repair the injured or 
degenerating cells. The most unique feature of 
these cells are capability of expression of 
immunomodulatory and tropical factors. These 
factors can augment and modulate both the 
adaptive and innate immune responses as all of 
these pertain to the regenerative paradigm. The 
mechanisms of damaged tissue repair is 
associated with activation of inflammatory cells, 
including all adaptive and innate immune cells, 
i.e. T cells, B cells, which are further chemotaxis 
by damaged, necrotic, apoptotic cells and 
stroma. In response, phagocytes also secrete or 
mediate the response by tumor necrosis factor 
alpha (TNF-α), interleukin 1 beta (IL-1β),  
c h e m o k i n e s  a n d  l e u k o t r i e n e s .  T h u s , 
c o m b i n a t i o n  o f  i n fl a m m a t o r y 
molecules/immune cells with endothelial cells 
a n d  fi b r o b l a s t ,  l e a d s  t h e  c h a n g e s  i n 
microenvironment which results in the 
mobilization and differentiation of MSCs in 
exchange of injured tissue cells (15-18).

 Stem cells have also been studied in a 
number of studies and have shown immense 
potential in repair and regeneration. There have 
been studies where it was proposed that these 
MSCs are emerging as key players in 
regenerative medicine. Currently, there are 344 
registered clinical trials in different phases 
across the world (19).  However, recent research 
has shown that stem cells implanted in various 

studies have low and transient homing to the site 
of injury and this has given rise to paracrine 
effect where stem cells not only release soluble 
factors, but also extracellular vesicles like 
exosomes which elicit similar biological activity 
to the stem cells themselves (20).

 Recent advances in stem cell research 
have appreciably influenced the background of 
regenerative medicine and tissue engineering. 
The success of stem cell-based technologies is 
due to its precise and reproducible control and its 
lineage differentiation and specification. 
Although stem cells have potential to regenerate 
tissues, current research scenario is shifted 
towards developing fully functional organs and 
various clinical uses including cell or tissue 
repair through three-dimensional printing 
methods.

 Hence, this review article will provide a 
brief of the recent advances in the field of 
understanding mechanisms of action of MSCs in 
tissue regeneration as described above.

Mechanisms of Action of Stem Cells
 
a.  Differentiation into Cell Types

Neuronal differentiation potential of human 
Mesenchymal Stem Cells (hMSCs)

 Several research groups have explored the 
neuronal differentiation potential of MSCs. The 
reports of differentiating stromal cells into 
neural cells/ neurons were reported by Sanchez-
Ramos et al and Woodbury et al (21, 22).  After 
this, several research groups started exploring 
the differentiation potential of MSCs by using 
different strategies, viz. using chemicals like 
Dimethyl Sulphoxide (DMSO)/ Butylated 
Hydroxyanisole (BHA), 3-isobutyal-1-
methylxanthine (IBMX)/dbcAMP, all-trans 
retinoic acid (ATRA), safrole oxide, etc. (23-26), 
growth factors like fibroblast growth factor 8 
(FGF8), sonic hedgehog (SHH), nerve growth 
factor (NGF), along with epidermal growth 
factor (EGF) and FGF2, etc.  (27-32), 
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conditioned media or co-culturing with brain 
cells (21, 33, 34), genetic engineering (35, 36), 
and recently by reprogramming cells and 
generating induced pluripotent stem cells (37, 
38) and by using different kinds of scaffolds for 
mimicking the matrix (39, 40).

 With the developing need to treat 
Parkinson's disease by a method other than 
conventional administration of L-DOPA, the 
cell replacement therapy emerged as a potential 
solution. The idea to differentiate stem cells into 
dopamine producing neuronal cells and then 
transplanting them into the patients came up as 
an upcoming field to explore. The idea emerged 
after successful transplantation of embryonic 
stem cells (ESC) into newborn rat, followed by a 
series of such studies later by various research 
groups (41-43). Starting from early 2007 and 
2009, MSCs were differentiated using cocktails 
of cytokines or/and growth factors or/and 
chemical reagents, etc. (44-50). Various 
combinations of induction media cocktails using 
SHH, FGF8, FGF2, EGF, brain-derived 
neutrotrophic factor (BDNF), ATRA, IBMX, 
cyclic adenosine 3', 5'-monophosphate (cAMP) 
and forskolin have been applied for in vitro 
differentiation of stem cells. 

Cardiac differentiation potential of hM SCs

 Trans-differentiation of MSCs has been 
proposed as one of the major mechanisms which 
participate in damage repair of cardiac tissue 
caused by myocardial infarction (51).  MSCs 
have been differentiated into cardiomyocytes in 
vitro using various inducers such as 5-Aza, 
Transforming growth factor-β1 (TGF-β1),  
DMSO, etc. or co-culture method. Among them, 
5-Aza is the most studied inducer for cardiac 
differentiation of MSCs (52). However, their 
translational value is limited due to its 
demethylating properties. TGF-β1, oxytocin and 
other small  molecules including Bone 
Morphogenetic Proteins (BMPs) have also been 
used which are devoid of notable side-effects. 
Upon in vitro differentiation, these cells show 
m o r p h o l o g i c a l  s i m i l a r i t i e s  w i t h 

cardiomyocytes, like flattening of cells, 
formation of intercalated discs, bi-nucleation or 
m u l t i - n u c l e a t i o n  a n d  e x p r e s s i o n  o f 
cardiomyogenic markers like myosin light 
chain, myosin heavy chain, actinin, troponin I, 
etc. In spite of numerous available protocols, till 
date no induction protocol has resulted in 
g e n e r a t i o n  o f  e l e c t r o - p h y s i o l o g i c a l 
functionality in cardiomyocytes from adult 
MSCs (53, 54). Additionally, their poor survival 
and engraftment at the injury site, questions the 
translational efficacy of this method.

 It has also been demonstrated that 
oxytocin or TGF-β1 treatment works as an 
efficient cardiomyogenic inducers (55, 56). In a 
previous study, our group established that TGF-
β1 is a potent cardiogenic inducer in BM-MSCs. 
Upon 14 days treatment, they expressed similar 
levels of cardiac-specific marker as compared to 
those treated with 5-Aza for 30 days (56). Also, 
priming of BM-MSCs with conditioned media 
of cardiac biopsy tissue increases the level of 
cardiac-specific markers like myosin light chain 
and cardiac troponin I (57). Besides the use of 
exogenous inducers, co-culture with cardiac 
cells has also been studied for MSC cardiac 
differentiation (58, 59). Injured myocardium is 
known to recruit MSCs for tissue regeneration, 
but is not sufficient if the infarcted region is 
large. Therefore, in such cases exogenous MSCs 
are injected directly to the peri-infarct area. After 
intra-myocardial injection, they have been found 
to engraft and make contacts with native 
cardiomyocytes (60). Additionally, the 
expression of connexin 43 (junctional protein) in 
MSCs may help them in electro-mechanical 
coupling with host cardiomyocytes (61).

 I n  s p i t e  o f  s o  m u c h  r e s e a r c h , 
authentication of this phenomenon is incomplete 
and other mechanisms including paracrine 
factors, mitochondrial transfer and cell fusion 
have been proposed as important players in the 
regeneration ability of MSCs.
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Osteogenic potential of hMSCs

 The existence of osteogenic stem cells 
within the bone marrow stroma was first 
described over fifty years ago, when Petrakova 
et al (62) obtained an osseous tissue by 
implanting pieces of bone marrow under kidney 
capsule. 

 Various protein-based cytokines and 
growth factors such as bone morphogenetic 
proteins (BMP)  (63, 64), TGF-β1 (65, 66), 
interleukin-6 (IL-6) (67), growth hormone (68), 
leptin (69), sortilin (70), and transglutaminase 
(71) have been suggested to be involved in 
regulating osteogenesis.  Besides these, several 
synthetic chemical compounds such as 
dexamethasone (72), β-glycerophosphate (73), 
L-ascorbic acid (74), prostaglandin E2 (75, 76), 
1,25-dihydroxyvitamin D3 (77), TAK-778 (78), 
and a family of compounds known as the statins 
(79, 80) have also been identified as key soluble 
factors which induce osteogenic differentiation 
of MSCs in vitro. In addition to supplements 
added to the basal medium, other techniques to 
optimize osteogenic induction have been 
investigated as well.  In some studies, 
mechanical stress (81), pulsed electromagnetic 
field (82), and hydrostatic pressure (83) were 
added to the osteogenic factors, while in others 
these factors were used to stimulate osteogenic 
differentiation without osteogenic induction 
supplements. The process of osteoblasts 
differentiation can be subdivided into three 
stages of proliferation, extracellular matrix 
synthesis and maturation, mineralization.

 Each stage is characterized by expression 
of distinguishing osteoblast markers. The most 
frequently used markers of osteoblast 
differentiation are alkaline phosphatase (ALP), 
collagen type 1 (Col 1), osteopontin (OPN), 
bone sialoprotein (BSP), osteocalcin (OCN) and 
PTH/PTHrp receptor (PTHR). In general, ALP, 
BSP and Col 1 are early markers for osteoblast 
differentiation, while PTHR and OCN appears 
late, parallel with mineralization (84).

 Transcription factor, Runx2 is a master 
regulator of osteogenic differentiation. It 
regulates the differentiation of MSCs towards 
osteogenic lineage by two independent 
signalling pathways via TGF-β1 and BMP2 (85, 
86). Along with Runx2, BMP2 and distal-less 
homeobox 5 (Dlx5) commit MSCs towards the 
osteogenic lineage. BMP2 induces the 
expression of osterix independent of Runx2 
(87). Following commitment, MSCs are 
differentiated into pre-osteoblasts. These pre-
osteoblasts express Runx2, D1x5, msh 
homeobox homologue 2 (Msx2), P2Y4 and 
P2Y14 (88, 89), and few markers of osteoblasts 
such as ALP, Col 1, and OPN, but their 
expression is weaker than that in immature 
osteoblasts.  ALP is one of the early proteins that 
regulate bone mineralization. β-Catenin, Runx2, 
and osterix differentiate pre-osteoblasts into 
immature osteoblasts. These are spindle shaped 
cells and secrete bone matrix protein, bone 
sialoprotein, and OPN (90). At later stages, 
Runx2 inhibits the maturation of osteoblasts 
(91). Osterix causes the terminal maturation of 
osteoblasts and induces OCN expression (92). 
When osteoblasts are completely differentiated 
they become cuboidal and produce a self-
mineralized organic matrix (93). The Golgi 
bodies and rough endoplasmic reticulum are 
well developed in mature osteoblasts as a result 
of increased need for protein production. The 
expression of OPN is reduced in mature 
osteoblasts; while the expression of other 
proteins such as P2X5 (89), ALP (94), Col 1 (94, 
95), and OCN (95) is increased.

b.  Immunomodulatory Effect of MSCs

 MSCs are unique type of stem cells that 
have capability of differentiating into different 
cell types and can rescue or repair the injured or 
degenerating cells. The most unique features of 
these cells are capability of expression of 
immunomodulatory and tropical factors. These 
factors can augment and modulate both the 
adaptive and innate immune responses as it 
pertains to the regenerative paradigm (96). The 
mechanisms of damaged tissue repair is 
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associated with activation of inflammatory cells, 
including all adaptive and innate immune cells, 
i.e. T cells, B cells, which are further chemotaxis 
by damaged, necrotic, apoptotic cells and 
stroma. In response, phagocytes also secrete or 
mediate the response by TNF-α, IL-1β, 
c h e m o k i n e s  a n d  l e u k o t r i e n e s .  T h u s , 
c o m b i n a t i o n  o f  i n fl a m m a t o r y 
molecules/immune cells with endothelial cells 
a n d  fi b r o b l a s t ,  l e a d s  t h e  c h a n g e s  i n 
microenvironment which results in the 
mobilization and differentiation of MSCs in 
exchange of injured tissue cells (97). The 
mobilized MSCs can be taken from bone 
marrow or from the nearby vicinity of the injured 
tissue. However, the concert mode of actions for 
homing and recruitment to the injury site are not 
known.  In  response  to  in jured  t i ssue 
microenvironment, MSCs secret many factors, 
including tropical and immunomodulatory 
factors such as EGF, FGF, platelet-derived 
growth factor (PDGF), TGF-β, vascular 
endothelial growth factor (VEGF), hepatocyte 
growth factor (HGF), IL-10, Indoleamine 2, 3-
dioxygenase (IDO), chemokine ligand-5 (CCL-
5) or regulated on activation, normal T cell 
e x p r e s s e d  a n d  s e c r e t e d  ( R A N T E S ) , 
prostaglandin E2, and nitric oxide (NO), insulin 
growth factor-1 (IGF-1), angiopoietin-1 (Ang-
1), keratinocyte growth factor (KGF) and 
stromal cell- derived factor-1 (SDF-1) (19, 20). 
In return, the growth factors help the 
development of fibroblast, endothelial cells and 
progenitor cells near the injured tissue area to 
carry out the tissue regeneration and repair. 
Another known mechanism for repair and 
regeneration by MSCs, includes the cell to cell 
contact. MSCs and immune cells interaction 
induces the secretion of anti-inflammatory 
factors such as IL-10 which inhibits the T cell 
proliferation and further in line upregulates the 
human leukocyte antigen-G5 (HLA-G5) 
secretion and in response it helps in diminishing 
the activated T cells and natural killer (NK) cell 
cytotoxicity (98-100). 

 There is another class of paracrine trophic 
factors like Ang-1, VEGF, HGF, EGF, PDGF, 

FGF, KGF and TGF-β, to affect the endothelial 
cells and initiating angiogenesis through their 
potent ia l  to  promote  endothel ia l  ce l l 
proliferation and production of extracellular 
matrix, which helps in reduction of endothelial 
permeability and inhibit the interaction between 
leukocytes and endothelial cells (101). 

Clinical status

 A plethora of studies of animal model and 
translational studies have identified the 
capability of hMSCs to home to sites of injury 
and/or inflammation, thus adding to their use for 
therapeutic purposes. According to the available 
database at National Institute of Health (NIH) 
clinical trial registry (https://clinicaltrials.gov/), 
as of April 2016, there were over 500 MSC-
related clinical trials registered. Surprisingly, 
while the immunomodulatory properties of 
MSCs have only more recently been identified, 
nearly half of all registered clinical trials-230 
trials or 42 % of all registered trials-are being 
conducted for immune-/inflammation- mediated 
diseases. Different tissue sources may also play 
an important role in terms of different diseases, 
with the most explored and reported source 
being adult BM-MSCs (41.2%). However, other 
tissue and fetal source MSCs are also popular 
choices, with 16.3 % of trials using adipose- 
derived MSCs, and 21.1 % of trials using fetal-
source MSCs which includes MSCs isolated 
from umbilical cord, umbilical cord blood, and 
placenta (102). While 32.5 % of all trials specify 
the use of autologous sources, over 50.9 % of 
trials appear to use allogeneic sources, i.e. trials 
which use fetal-source MSCs on adult patients. 
Unspecified donor sources account for 
approximately 16.7 % of trials.

 hMSCs are promising as a means of 
augmenting brain repair by paracrine signalling. 
During the brain injury, microglia are the first 
type of cell in inflammatory cascade followed by 
cytokines rush in the injury area. The 
proinflammatory M1 phenotype of microglia is 
associated with tissue destruction, whereas the 
inflammatory M2 phenotype of microglia 



109 Sujata Mohanty

facilitates repair and regeneration. MSC therapy 
may improve outcomes of ischemic stroke, 
neural trauma, and heatstroke by inhibiting the 
activity of M1 phenotype of microglia but 
augmenting the activity of M2 phenotype of 
microglia (103).

 The positive results seen in preclinical 
animal studies have largely not yet translated 
into clinical efficacy. Clearly, there is still much 
to learn and optimize with regards to the in vivo 
interactions of MSCs in human pathological 
states. As we improve our understanding on the 
m e c h a n i s t i c  p r o p e r t i e s  o f  M S C 
immunomodulation, we also need to clarify 
patho-physiological details and subsets within 
disease entities to better tailor MSC therapy. One 
important aspect is to delineate tissue-specific 
functional different in MSCs from difference 
sources; the current International Stem Cell 
Therapy (ISCT) standardization does not 
include immune-related functional tests or more 
detailed molecular validation.

c.  Paracrine Mechanism of Action of MSCs

 Stem cells have been investigated in a 
number of studies and shown to have immense 
potential in repair and regeneration. There have 
been studies where it was proposed that these 
MSCs are emerging as key players in 
regenerative medicine (19). Currently, there are 
344 registered clinical trials in different phases 
across the world (104).  However, recent 
research has shown that stem cells implanted in 
various studies have low and transient homing to 
the site of injury and this has given rise to 
paracrine effect where stem cells not only 
release soluble factors, but also extracellular 
vesicles like exosomes which elicit similar 
biological activity to the stem cells themselves 
(20). These extracellular vesicles such as 
exosomes secreted by MSCs carry proteins and 
RNAs that help in rescuing and repairing of the 
damaged or diseased tissues. Amongst RNA, 
microRNA (miRNA) specifically have been 
shown to play central role in many diseases. 
Aberrant miRNA expression is an emerging 

theme for a wide variety of diseases, 
highlighting the fundamental role played by 
miRNAs in both physiological and pathological 
states. Therefore repairing of diseased tissues 
via exosome delivery (for miRNA) has inspired 
an alternative approach in regenerative 
medicine, i.e. translating the potential clinical 
applications based on exosomes secreted by the 
stem cells rather than the stem cells themselves . 
Initial studies using these MSCs were in 
cardiovascular diseases where it was first 
observed that condition media of these MSCs 
has paracrine effect and help in repair and 
regeneration. In 2010 it was first investigated in a 
m o u s e  m o d e l  o f  m y o c a r d i a l 
ischemia/reperfusion injury that the condition 
media contain extracellular vesicles called 
exosomes (105).  Following this, there were a 
large number of studies where these exosomes 
were isolated, characterized and studied in 
different disease models. To mention a few are: 
liver fibrosis, neurodegenerative diseases, 
kidney diseases, etc. In all these studies, MSCs 
derived exosomes have shown to elicit similar 
biological repair activity as that of MSCs 
themselves.  Exosomes content have also been 
extensively studied including proteomics and 
RNA sequencing. It was observed that there is 
specific sorting of these biological molecules 
into these vesicles. Most of these studies related 
to the exosome profiling can be found in 
database of exosomal proteins and miRNAs at 
ExoCarta (www.exocarta.org).  All these studies 
have successfully identified exosomes derived 
from MSCs as alternative source for therapeutic 
potential. These exosome due to their small size 
have vast applications like can cross blood brain 
barrier and are being studied in various 
neurodegenerative diseases. One such study has 
shown that MSCs-derived exosomes carry 
neprilysin protein which have therapeutic 
relevance in Alzheimer's, diseases (106-107). 
With recent advancements in research and 
technology, these exosomes may be new beacon 
for cell free therapy, where the content of these 
exosomes can be modulated as per the 
requirement and used as drug delivery system. 
These exosomes can be used for off the shelf 
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therapeutic purposes. Although a lot has been 
known about these exosomes, but few basic 
questions and problem still needs to be tackle 
before these exosomes can be successfully taken 
up to therapeutic study (108-109). These include 
standardized protocol for their isolation and 
characterization. Mass production for wide scale 
study is the current challenge that needs to be 
answered so far.

d.  Tissue Engineering and MSCs

Bone tissue engineering

 With the huge plethora of orthopaedic 
deformation cases occurring everyday, tissue 
engineering and stem cell researchers have been 
on a quest to develop clinically relevant bone 
graft equivalents. While autologous/allogenic 
grafts are still the gold standard for a complex 
bone injury, their advantages are outweighed by 
limited supply and associated health risks. 
Therefore, to recapitulate the osteoinductive 
properties of bone grafts, current scaffold-based 
bone tissue engineering relies upon bioinspired 
approaches to accommodate the requirements of 
the  cul tured cel ls  to  guide  adhesion, 
proliferation, migration, differentiation and 
tissue morphogenesis.

 Standard tissue engineering strategy 
involves culturing osteoprogenitors onto 3D 
scaffolds with appropriate osteoinductive 
factors for promoting new bone synthesis. 
Osteogenic potential of various stem cells 
including BM-MSCs, adipose tissue-derived 
stem cells (ADSCs), ESCs, umbilical cord 
blood-derived mesenchymal stem cells 
(UCMSCs), dental pulp stem cells (DPSCs) and 
induced pluripotent stem cells (iPSCs) is being 
utilized (110). However, appropriate use of stem 
cells to engineer artificial bone grafts requires 
proper isolation and standardization protocols 
for controlled differentiation of cells into 
osteoblasts or terminal osteocytes. Wang et al 
(111) compared the osteogenic differentiation 
potential of hBMSCs, hiPSCs and hUCMSCs 
using 3D calcium phosphate cement (CPC). In 

vitro results demonstrated high cell viability and 
enhanced osteogenic expression (Runx2, Col 1, 
OCN) across all groups; however, de novo bone 
formation in rat cranial defects demonstrated 
highest hiPSCs and lowest for BMSCs. 
M o r e o v e r,  c e l l - l a d e n  3 D  c o n s t r u c t s 
demonstrated increased vascularized bone over 
cell-free scaffolds after 12 weeks. While these 
results hold true for the CPC scaffolds, the 
response might vary depending upon different 
material compositions and topography, source of 
stem cells, their differentiation protocols 
employed, genetic modifications induced in 
cells, if any. Therefore, a standard consensus on 
the most optimal strategy for the application of 
stem cell technology in bone tissue engineering 
still remains elusive (112, 113).

 Another critical aspect that can dictate the 
course of stem cell differentiation is the choice of 
scaffold used. Since bone is primarily composed 
of calcium phosphate, ceramics and ceramic- 
glasses like hydroxyapatite (HA) (114), 
tricalcium phosphate (115), bioactive glass 
(116) have been extensively used for treating 
bone injuries. Since ceramics on their own are 
brittle, combining HA with various scaffold 
formulations made of polymers (both natural 
and synthetic) such as HA-chitosan (117), HA-
chitosan-polycaprolactone (118), HA-silk (119, 
120) can fabricate biocomposites that possess 
hierarchical resemblance to native bone tissue. 
Also, recent applications in the field have also 
incorporated nanostructured ceramics and 
polymers with patterned topography for guided 
cell differentiation (121). Nanoparticles 
developed using this technology not only serves 
as mechanical strength inducers for scaffold 
fabrication (122),  they have profound 
applications in stem cell tracking with promising 
applications in leukemia (123). 

 While most of the commercial bone 
grafting materials such as titanium plates, 
hydroxyapatite, bioactive glasses and polymers 
fail to cater to the needs of individual patients 
due to their standardized production. Therefore, 
the field of bone tissue engineering has advanced 
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towards 3D (124) and 4D (135) bioprinting of 
encapsulated stem cells to enable development 
of custom-made, on-demand, personalized bone 
g r a f t s .  W i t h  t h e  p o w e r f u l  t o o l  o f 
reprogrammable stem cell technology combined 
with improved materials and 3D/4D fabrication 
strategies, regenerating complete functional 
limbs may even become possible. 

Neuronal tissue engineering

 Nerve diseases including acute injury 
caused by mechanical, thermal, chemical or 
ischemic factors such as peripheral nerve injury 
(PNI), spinal cord injury (SCI) and traumatic 
brain injury (TBI), and chronic disease like 
neurodegeneration disease can damage the 
nervous system and impair system functions like 
memory, cognition, language and voluntary 
movement (126).  

 Despite advances in microsurgical 
techniques and a progressive understanding of 
pathophysiological mechanisms, peripheral 
nerve repair continues to be a major clinical 
challenge. 

 The gold standard method for repairing 
damaged peripheral nerves is the nerve 
autograft. This is not an ideal method because of 
donor site morbidity, the requirement for 
additional surgery, and limited donor tissue 
availability. These limitations of autograft have 
led to the development of alternative therapies.  
The use of tissue engineering to construct 
artificial nerves that mimics the nerve autograft 
provides a potentially innovative solution for 
peripheral nerve repair (126). 

 Among the various forms of scaffolds 
highly porous electrospun nanofiber matrices 
are a logical choice because of the physical and 
structural similarities to the extracellular matrix 
(ECM) components such as collagen fibers and 
their high surface area. 

 Several studies have shown that MSCs, 
human (h) hASCs, nerve precursor cells (NPCs), 

neural stem cells or Schwann cells (SCs) in 
combination with electrospun nanofibrous 
scaffolds have the potential of neural tissue 
regeneration (126). SCs are the principal glial 
cells of the peripheral nervous system which are 
responsible for secretion of basement membrane 
ECM, neurotropic factors and cell surface 
adhesion molecule synthesis.  Therefore, an 
ideal scaffold onto which SCs attach, proliferate, 
and migrate plays a key role in neural tissue 
engineering (127). Among the various physical 
structures that can impart to improve neural 
regeneration, nanofiber orientation has been 
shown to increase ECM production. Alignment 
of nanofiber has been reported to greatly 
influence cell growth and related functions in 
different cell sources such as neurons and human 
coronary artery smooth muscle cell (SMCs) 
(127). It has been reported in different studies 
that, unidirectional aligned nanofibers can 
provide better contact guidance effects towards 
neurite outgrowth and help in providing cues to 
enhance SCs extension and axon regeneration.

Cardiac tissue engineering (CTE)

 Cardiovascular diseases (CVDs) are the 
leading cause of death in the developed world, 
and there is a soaring need for heart transplant as 
the ultimate treatment option left for many who 
suffer from end-stage heart failure. The common 
CVDs such as atherosclerosis, rheumatic fever, 
congenital malformations and thrombosis, they 
all cause damage to the heart muscle. 
Unfortunately, the damage is irreversible 
because the heart muscle cells, cardiomyocytes, 
are thought to be terminally differentiated and 
non-proliferative, which necessarily limits the 
regenerative potential of the heart (128).

 CTE involves the growth of functional 
cardiac tissue in vitro on biomaterial scaffolds 
for regenerative medicine application in cardiac 
diseases (129). This strategy relies on the 
optimization of the complex relationship 
between cell networks and biomaterial 
properties.
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 Heart is a muscular hollow organ; its ECM 
morphology and elasticity regulate cell shape 
and coordinate myofibril assembly, thereby 
influencing tissue architecture and contractile 
strength (127). In CTE, biomaterials serve as 
scaffolds for tissue formation and vehicles for 
the delivery of stem cells or cardiomyocytes. 
Scaffolds for CTE require a number of criteria to 
be carefully considered to allow for optimal 
tissue function including: physical properties of 
the polymer (e.g. strength and elasticity), 
degradation rates, and host immune response. 
Natural polymers such as alginate and collagen 
are most commonly used as scaffolds for CTE 
due to their availability and biocompatibility. In 
synthetic materials, FDA approved polyesters 
such as polycaprolactone, poly-L-lactic and poly 
(lacticco-glycolic) acids are commonly used as 
they meet the most of the requirement of cardiac 
tissue (128). To satisfy the functional 
characteristics of heart, the ideal cardiac 
biomaterial should account for several design 
parameters. It should match the mechanical 
properties of the myocardium. A cardiac patch of 
rigid and inelastic biomaterial will impede heart 
contraction and a too soft cardiac scaffold cannot 
be used for mechanically reinforcing the 
myocardium in pathological cardiac dilation 
(129,130). 

 Recently, rat (130) and human (131) 
decellularized heart scaffolds have been shown 
to support the attachment, alignment and 
survival of rat neonatal cardiomyocytes and 
human mesenchymal bone marrow derived stem 
cells.  

Future Prospects

 hMSCs hold immense translational 
potential in the field of regenerative medicine. 
All the aspects described in this review are very 
crucial to establish the efficacy of hMSCs in 
treating degenerative and immunological 
diseases. In tissue engineering, directing the 
cells to differentiate at the appropriate time, in 
the appropriate place, and into the most 
appropriate phenotype, requires an optimum 

environment that governs cellular processes in 
vivo. Future directions in hMSCs and tissue 
engineering will involve elucidation of 
molecular mechanisms by which all types of 
external cues influence stem cells' behaviour, 
followed by translation of these findings to 
clinical applications. Further advances in 
controlling stem cell fate can be achieved by 
combining the above mentioned parameters in a 
more scalable and combinatorial manner to 
address the complexity of the natural stem cell 
niche.
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