
Dual Inhibitors Targeting DNA and Histone Deacetylases
Chen Chen1 Xinying Yang2 Xuben Hou2 Hao Fang2

1Department of Pharmaceutical Synthesis and Analysis, Shandong
Analysis and Test Center, Qilu University of Technology (Shandong
Academy of Sciences), Jinan, People’s Republic of China

2Department of Medicinal Chemistry, Key Laboratory of Chemical
Biology, Ministry of Education, School of Pharmaceutical Sciences,
Shandong University, Jinan, People’s Republic of China

Pharmaceut Fronts 2020;2:e88–e93.

Address for correspondence Hao Fang, PhD, Department of
Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong
University, 44 West Culture Road, Jinan, 250012,
People’s Republic of China (e-mail: haofangcn@sdu.edu.cn).

Introduction

Over the last decade, chemotherapeutics and targeted drugs
have been the most common and effective approaches for
cancer treatment. Due to activation of compensatory mecha-
nisms and multiple signaling pathways, cancer cells become
resistant to single-target drugs.1 Thus, drug combination
treatment gradually attracts the interest of researchers by its
advantages such as synergistic effects and less resistance.2

Furthermore, lower doses of the individual drugs are used,
which means fewer side effects than single-drug treatments.3

Currently, drug combination therapieshavemoved toward the
dual- or multi-targeting drugs,4 which has raised scientific
interest through some advantages such as the more predict-
able pharmacokinetics and the less risks of drug interactions.5

DNA is themost important storage unit of genetic information
and plays key roles in replication, transcription, and transla-
tion.6 Histone deacetylases (HDACs) get rid of acetyl groups
from histones and regulate the structure of chromatin. It is
reported that thestructureofchromatinbecomes relaxedafter
inhibition of HDAC, leading to DNA damage.7 Several dual
DNA/HDAC inhibitors have been reported, which possess
obvious anticancer activity.8 This article describes the dual
DNA/HDAC inhibitors and their biology activity studies.

DNA and DNA Binders

Covalent and noncovalent interactions are main processes
happening between small molecules and DNA. The interac-

tion between alkylating agents and DNA is a covalent
interaction (►Fig. 1). The formation of covalent bonds
between alkylating agents and DNA leads to the inhibition
of replication or transcription. Earlier, doctors used nitro-
gen mustards, the first-generation alkylating agents, for
therapy of leukemias and lymphomas. The nitrogen mus-
tard molecules attack the N7 of guanine to form an azir-
idinium ion, thereby causing DNA interstrand cross-linking.
Other well-known alkylators include platinum derivatives,9

oxazaphosphorines,10 nitrosoureas,11 triazenes,12 hydra-
zines,13 and so on.

Intercalation and groove binding belong to noncovalent
interactions. DNA intercalators could intercalate and stack
between the adjacent DNA base pairs,14 which resulted in
elongation of the DNA,15 finally interrupting the replication,
transcription, and DNA repair processes.16 Topoisomerases
(Topo) could combine with DNA to form a reversible cova-
lent Topo–DNA complex and modulate DNA supercoiling.17

Topo inhibitors could intercalate into DNA base pairs and
maintain the structure of the DNA–enzyme cleavable com-
plex.18 Thus, most of Topo inhibitors are also DNA inter-
calators (►Fig. 2).

DNA groove binders could bind to the edges of DNA
base pairs via reversible noncovalent interactions,19 yet
the conformation of DNA duplex was changeless.20 To
adapt with the shape of the minor groove, minor groove
binders (MGBs) are often designed as isohelical and cres-
cent-shaped molecules. The common MGBs are listed
in ►Fig. 3.
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HDACs and HDAC Inhibitors

As a crucial enzyme in epigenetics regulation, HDACs elimi-
nate the acetyl groups of lysine residues, resulting in a
condensed chromatin structure and transcriptional suppres-
sion. Eighteen members of human HDACs have been found,
and they are subdivided into four classes (►Table 1).

As the structures of various HDACswere elucidated, lots of
HDAC inhibitors have been developed. The common phar-
macophoremodel of HDAC inhibitors comprises a cap group,
a linker and a zinc-binding group (ZBG). The linker is usually a
saturated or unsaturated fatty chain, or an aromatic and
heterocyclic ring, which connects the cap group to ZBG and
interacts with a hydrophobic channel of active pocket. ZBG,
including hydroxamic acid, carboxylic acid, boric acid, and so

on, reversibly or irreversibly chelates to Zn2þ at the bottomof
the active pocket.

HDAC inhibitors based on hydroxamic acid are the most
representative HDAC inhibitors and three drugs have been
approved by Food and Drug Administration. Vorinostat,
belinostat, and panobinostat were respectively approved
for the treatment of relapsed/refractory cutaneous T cell
lymphoma, peripheral T cell lymphoma (PTCL), and multiple
myeloma. They are all pan-HDAC inhibitors (►Fig. 4).

Valproic acid (VPA) and benzenebutyric acid are weak
inhibitors of class I and class II HDACs (►Fig. 5). Among them,
VPA is used for the treatment for epilepsy, bipolar disorder,
and migraine.

Entinostat (MS-275) and tacedinaline (CI-994) are class I
selective HDAC inhibitors. Entinostat is in the third phase of

Fig. 1 DNA alkylating agents.

Fig. 2 DNA intercalators.
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clinical treatment for breast cancer. Chidamide is a Chinese
original class I selective HDAC inhibitor against relapsed/
refractory PTCL. Their structures are listed in ►Fig. 6.

As a prodrug, romidepsin (►Fig. 7) reduces the disulfide
bond to a thiol, reaching the active center of class I HDACs, in
turn sequestering Zn2þ to exert HDAC inhibitory activity.

Dual Inhibitors Targeting DNA and HDACs

Dual Inhibitors Based on Nitrogen Mustards
In 2015, Liu et al developed and characterized a novel dual-
targeting HDAC/DNA drug based on bendamustine.21 The
representative drug CY190602 showed significantly improved
anticancer activity in vitro and invivo (Scheme 1).Meanwhile,
CY190602 was used as a tool to explore the role of HDAC in

DNA damage and repair. As a result, it was found that the
expression of TYMS, Tip60, CBP, EP300, and MSL1, which
participate in DNA synthesis and repair, was related to
HDAC activity. These findings provide rationales for dual-
targeting inhibitors, to overcome the resistance of cancer cells.

Based on the strategy of combination of nitrogen and
hydroxamic acid, Xie et al reported a series of chlorambucil
derivatives with a hydroxamic acid tail and assayed the
inhibitory activities of these derivatives on DNA and total
HDACs.22 The results showed that vorambucil (Scheme 2)
possessed good HDAC1, HDAC2, and HDAC6 inhibitory activ-
ities with micromolar level IC50 values. In addition, voram-
bucil showed potent antiproliferative activity against A375
cancer cells and could significantly inhibit their colony
formation. Meanwhile, vorambucil remarkably affected can-
cer cell apoptosis and cycle.

In 2018, a dual-targeting inhibitor named chlordinaline
was reported (Scheme 3).23 Chlordinaline exhibited moder-
ate total HDAC inhibitory activity and selectivity and HDAC3

Fig. 3 DNA minor groove binders.

Table 1 The human HDAC family: classes and names

Classes Names

Class I HDAC 1, 2, 3, 8

Class II IIa: HDAC 4, 5, 7, 9
IIb: HDAC 6, 10

Class III (sirtuins) Sirtuin1–7

Class IV HDAC11

Abbreviation: HDAC, histone deacetylase.

Fig. 4 Structures of vorinostat, belinostat, and panobinostat.

Fig. 5 Structures of VPA and benzenebutyric acid.
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inhibitory activity. For A549, A375, SMMC7721, HepG2,
H1299, and H460 cell lines, chlordinaline showed more
potent antiproliferative activity than the reference drugs
chlorambucil and tacedinaline. In addition, chlordinaline
could induce the apoptosis and G2/M phase cell-cycle arrest
of A375 cancer cells. Xie et al’s research demonstrates that a
single molecule containing nitrogen mustard and 2-amino-

benzamide or hydroxamic acid fragment may be a potent
antitumor agent owing to its DNA-binding activity andHDAC
inhibitory activity.

Dual Inhibitors Based on Metal Complexes
In 2009, Griffith et al reported the first Pt complex with dual
DNA-binding and HDAC inhibitory activity.24 Agarose gel
electrophoretic assay verified that the Pt complex 3 (►Fig. 8)
bound to nucleotides leading to the DNA strands unwrapping.
Pt complex 3 showed moderate inhibitory activity against
HDAC1 with IC50 values as low as 1 μmol/L. Furthermore, for
A2780P cell lines, Pt complex 3 had a similar cytotoxicity (IC50
9 μmol/L) as compared with cisplatin (IC50 3 μmol/L), but for

Fig. 6 The structures of entinostat, etc.

Fig. 7 Structures of romidepsin.

Fig. 8 Structure of Pt complex 3.
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normalhumandermalfibroblastcells, Pt complex3 is less toxic
than cisplatin (IC50 83 vs. IC50 10 μmol/L).

McGivern et al designed and developed a series of Cu (II)
prodrugs containing SAHA and phenanthrene ligands as DNA
intercalators (►Fig. 9).25 It was proved that the complex
preferred to intercalate at both A-T- and G-C-rich sequences,
resulting in DNAdamageby yielding reactive oxygen species.
In addition, the prodrug displayed promising antiprolifera-
tive effects against twop53-mutated cell lines possessing SK-
OV-3 and DU145, with IC50 values of as low as 1 μmol/L. It
was verified by confocal imaging and gene expression analy-
sis that the cytotoxicity of this metallodrug came from an
apoptotic pathway.

Dual Inhibitors Based on Intercalators
In 2018, Chen et al reported a new series of acridine hydroxa-
mic acid derivatives targeting both Topo and HDAC.26 Among
these compounds, compound 8c (►Fig. 10) showed the best
enzyme inhibitory activity. In addition to having micromolar
level enzyme inhibitoryactivity, it also showednanomolar IC50
values against U937 cells. What’s more, 8c interacted with
DNA and induced U937 apoptosis through both endogenous
and exogenous pathways.

Ling et al reported a novel series of hybrid derivatives as
dual inhibitors.27 The most potent compound YL-11c
(►Fig. 11) showed good HDAC inhibitory antiproliferative
effects in vitro. Meanwhile, YL-11c cleaved both PARP and
caspase 3, triggering cancer cell apoptosis. Furthermore, YL-
11c enhanced expression of histone H2AX phosphorylation

and p-p53 (Ser15), which were usually used as DNA damage
markers.

Conclusion

Due to the importance of DNA and HDAC in cancer therapy,
some dual inhibitors targeting DNA and HDACs have been
developed and evaluated. In this review, we overviewed the
newest studies and summarized their biology activity. Sev-
eral molecules targeting DNA and HDACs showed excellent
activity against cancer cell lines.With their excellent activity,
they may become hopeful candidates and valuable tools to
illuminate their mechanism for cancer therapy.
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