Semin Neurol 2020; 40(05): 473-484
DOI: 10.1055/s-0040-1713926
Review Article

Development of the Autonomic Nervous System: Clinical Implications

Frances Lefcort
1   Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana
› Author Affiliations
Acknowledgments This work was supported by the following grants from the NIH: R01 NS 35768 and R01 DK117473.

Abstract

Investigations of the cellular and molecular mechanisms that mediate the development of the autonomic nervous system have identified critical genes and signaling pathways that, when disrupted, cause disorders of the autonomic nervous system. This review summarizes our current understanding of how the autonomic nervous system emerges from the organized spatial and temporal patterning of precursor cell migration, proliferation, communication, and differentiation, and discusses potential clinical implications for developmental disorders of the autonomic nervous system, including familial dysautonomia, Hirschsprung disease, Rett syndrome, and congenital central hypoventilation syndrome.



Publication History

Article published online:
14 September 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers
333 Seventh Avenue, New York, NY 10001, USA.

 
  • References

  • 1 Le Douarin NM, Kalcheim C. The neural crest. Cambridge: Cambridge University Press; 1999
  • 2 Betancur P, Bronner-Fraser M, Sauka-Spengler T. Assembling neural crest regulatory circuits into a gene regulatory network. Annu Rev Cell Dev Biol 2010; 26: 581-603
  • 3 Dupin E, Le Douarin NM. The neural crest, a multifaceted structure of the vertebrates. Birth Defects Res C Embryo Today 2014; 102 (03) 187-209
  • 4 Vega-Lopez GA, Cerrizuela S, Tribulo C, Aybar MJ. Neurocristopathies: new insights 150 years after the neural crest discovery. Dev Biol 2018; 444 (Suppl. 01) S110-S143
  • 5 Erickson CA, Duong TD, Tosney KW. Descriptive and experimental analysis of the dispersion of neural crest cells along the dorsolateral path and their entry into ectoderm in the chick embryo. Dev Biol 1992; 151 (01) 251-272
  • 6 Lefcort F, George L. Neural crest cell fate: to be or not to be prespecified. Cell Adhes Migr 2007; 1 (04) 199-201
  • 7 Serbedzija GN, Fraser SE, Bronner-Fraser M. Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labelling. Development 1990; 108 (04) 605-612
  • 8 Vega-Lopez GA, Cerrizuela S, Aybar MJ. Trunk neural crest cells: formation, migration and beyond. Int J Dev Biol 2017; 61: 5-15
  • 9 Dupin E, Calloni GW, Coelho-Aguiar JM, Le Douarin NM. The issue of the multipotency of the neural crest cells. Dev Biol 2018; 444 (Suppl. 01) S47-S59
  • 10 McKinney MC, Fukatsu K, Morrison J, McLennan R, Bronner ME, Kulesa PM. Evidence for dynamic rearrangements but lack of fate or position restrictions in premigratory avian trunk neural crest. Development 2013; 140 (04) 820-830
  • 11 Kasemeier-Kulesa JC, McLennan R, Romine MH, Kulesa PM, Lefcort F. CXCR4 controls ventral migration of sympathetic precursor cells. J Neurosci 2010; 30 (39) 13078-13088
  • 12 George L, Chaverra M, Todd V, Lansford R, Lefcort F. Nociceptive sensory neurons derive from contralaterally migrating, fate-restricted neural crest cells. Nat Neurosci 2007; 10 (10) 1287-1293
  • 13 George L, Kasemeier-Kulesa J, Nelson BR, Koyano-Nakagawa N, Lefcort F. Patterned assembly and neurogenesis in the chick dorsal root ganglion. J Comp Neurol 2010; 518 (04) 405-422
  • 14 Nitzan E, Krispin S, Pfaltzgraff ER, Klar A, Labosky PA, Kalcheim C. A dynamic code of dorsal neural tube genes regulates the segregation between neurogenic and melanogenic neural crest cells. Development 2013; 140 (11) 2269-2279
  • 15 Bronner ME, Simões-Costa M. The neural crest migrating into the twenty-first century. Curr Top Dev Biol 2016; 116: 115-134
  • 16 Furlan A, Adameyko I. Schwann cell precursor: a neural crest cell in disguise?. Dev Biol 2018; 444 (01) (Suppl. 01) S25-S35
  • 17 Uesaka T, Nagashimada M, Enomoto H. Neuronal differentiation in Schwann cell lineage underlies postnatal neurogenesis in the enteric nervous system. J Neurosci 2015; 35 (27) 9879-9888
  • 18 Dupin E, Sommer L. Neural crest progenitors and stem cells: from early development to adulthood. Dev Biol 2012; 366 (01) 83-95
  • 19 Dyachuk V, Furlan A, Shahidi MK. et al. Neurodevelopment. Parasympathetic neurons originate from nerve-associated peripheral glial progenitors. Science 2014; 345 (6192): 82-87
  • 20 Espinosa-Medina I, Outin E, Picard CA. et al. Neurodevelopment. Parasympathetic ganglia derive from Schwann cell precursors. Science 2014; 345 (6192): 87-90
  • 21 Espinosa-Medina I, Jevans B, Boismoreau F. et al. Dual origin of enteric neurons in vagal Schwann cell precursors and the sympathetic neural crest. Proc Natl Acad Sci U S A 2017; 114 (45) 11980-11985
  • 22 Furlan A, Dyachuk V, Kastriti ME. et al. Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science 2017; 357 (6346): 357
  • 23 Newbern J, Birchmeier C. Nrg1/ErbB signaling networks in Schwann cell development and myelination. Semin Cell Dev Biol 2010; 21 (09) 922-928
  • 24 Joseph NM, Mukouyama YS, Mosher JT. et al. Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells. Development 2004; 131 (22) 5599-5612
  • 25 Kaukua N, Shahidi MK, Konstantinidou C. et al. Glial origin of mesenchymal stem cells in a tooth model system. Nature 2014; 513 (7519): 551-554
  • 26 Adameyko I, Lallemend F, Aquino JB. et al. Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell 2009; 139 (02) 366-379
  • 27 Corpening JC, Cantrell VA, Deal KK, Southard-Smith EMA. A Histone2BCerulean BAC transgene identifies differential expression of Phox2b in migrating enteric neural crest derivatives and enteric glia. Dev Dyn 2008; 237 (04) 1119-1132
  • 28 De Bellard ME, Rao Y, Bronner-Fraser M. Dual function of Slit2 in repulsion and enhanced migration of trunk, but not vagal, neural crest cells. J Cell Biol 2003; 162 (02) 269-279
  • 29 Nagy N, Goldstein AM. Enteric nervous system development: a crest cell's journey from neural tube to colon. Semin Cell Dev Biol 2017; 66: 94-106
  • 30 Krull CE, Lansford R, Gale NW. et al. Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration. Curr Biol 1997; 7 (08) 571-580
  • 31 Kuo BR, Erickson CA. Regional differences in neural crest morphogenesis. Cell Adhes Migr 2010; 4 (04) 567-585
  • 32 Burstyn-Cohen T, Stanleigh J, Sela-Donenfeld D, Kalcheim C. Canonical Wnt activity regulates trunk neural crest delamination linking BMP/noggin signaling with G1/S transition. Development 2004; 131 (21) 5327-5339
  • 33 De Calisto J, Araya C, Marchant L, Riaz CF, Mayor R. Essential role of non-canonical Wnt signalling in neural crest migration. Development 2005; 132 (11) 2587-2597
  • 34 Kos R, Reedy MV, Johnson RL, Erickson CA. The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development 2001; 128 (08) 1467-1479
  • 35 Britsch S, Goerich DE, Riethmacher D. et al. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 2001; 15 (01) 66-78
  • 36 Southard-Smith EM, Kos L, Pavan WJ. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet 1998; 18 (01) 60-64
  • 37 Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL. Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 1993; 75 (03) 463-476
  • 38 Ma Q, Fode C, Guillemot F, Anderson DJ. ; Ma Q1. Neurogenin1 and neurogenin2 control two distinct waves of neurogenesis in developing dorsal root ganglia. Genes Dev 1999; 13 (13) 1717-1728
  • 39 Rohrer H. Transcriptional control of differentiation and neurogenesis in autonomic ganglia. Eur J Neurosci 2011; 34 (10) 1563-1573
  • 40 Chan WH, Anderson CR, Gonsalvez DG. From proliferation to target innervation: signaling molecules that direct sympathetic nervous system development. Cell Tissue Res 2018; 372 (02) 171-193
  • 41 Saito D, Takase Y, Murai H, Takahashi Y. The dorsal aorta initiates a molecular cascade that instructs sympatho-adrenal specification. Science 2012; 336 (6088): 1578-1581
  • 42 Shah NM, Groves AK, Anderson DJ. Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell 1996; 85 (03) 331-343
  • 43 Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 1999; 399 (6734): 366-370
  • 44 Huber K, Brühl B, Guillemot F, Olson EN, Ernsberger U, Unsicker K. Development of chromaffin cells depends on MASH1 function. Development 2002; 129 (20) 4729-4738
  • 45 Dauger S, Pattyn A, Lofaso F. et al. Phox2b controls the development of peripheral chemoreceptors and afferent visceral pathways. Development 2003; 130 (26) 6635-6642
  • 46 Huber K, Karch N, Ernsberger U, Goridis C, Unsicker K. The role of Phox2B in chromaffin cell development. Dev Biol 2005; 279 (02) 501-508
  • 47 Baker CVH, Bronner-Fraser M. Establishing neuronal identity in vertebrate neurogenic placodes. Development 2000; 127 (14) 3045-3056
  • 48 Karpinski BA, Bryan CA, Paronett EM. et al. A cellular and molecular mosaic establishes growth and differentiation states for cranial sensory neurons. Dev Biol 2016; 415 (02) 228-241
  • 49 Breau MA, Schneider-Maunoury S. Cranial placodes: models for exploring the multi-facets of cell adhesion in epithelial rearrangement, collective migration and neuronal movements. Dev Biol 2015; 401 (01) 25-36
  • 50 Berthoud HR. Vagal and hormonal gut-brain communication: from satiation to satisfaction. Neurogastroenterol Motil 2008; 20 (Suppl. 01) 64-72
  • 51 Kim S, Kwon SH, Kam TI. et al. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson's disease. Neuron 2019; 103 (04) 627-641.e7
  • 52 Ernfors P, Lee KF, Jaenisch R. Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 1994; 368 (6467): 147-150
  • 53 Erickson JT, Conover JC, Borday V. et al. Mice lacking brain-derived neurotrophic factor exhibit visceral sensory neuron losses distinct from mice lacking NT4 and display a severe developmental deficit in control of breathing. J Neurosci 1996; 16 (17) 5361-5371
  • 54 Liu X, Ernfors P, Wu H, Jaenisch R. Sensory but not motor neuron deficits in mice lacking NT4 and BDNF. Nature 1995; 375 (6528): 238-241
  • 55 Conover JC, Erickson JT, Katz DM. et al. Neuronal deficits, not involving motor neurons, in mice lacking BDNF and/or NT4. Nature 1995; 375 (6528): 235-238
  • 56 Jones KR, Fariñas I, Backus C, Reichardt LF. Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 1994; 76 (06) 989-999
  • 57 Moore MW, Klein RD, Fariñas I. et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature 1996; 382 (6586): 76-79
  • 58 Brady R, Zaidi SI, Mayer C, Katz DM. BDNF is a target-derived survival factor for arterial baroreceptor and chemoafferent primary sensory neurons. J Neurosci 1999; 19 (06) 2131-2142
  • 59 Thoby-Brisson M, Cauli B, Champagnat J, Fortin G, Katz DM. Expression of functional tyrosine kinase B receptors by rhythmically active respiratory neurons in the pre-Bötzinger complex of neonatal mice. J Neurosci 2003; 23 (20) 7685-7689
  • 60 Goldberg D, Borojevic R, Anderson M, Chen JJ, Gershon MD, Ratcliffe EM. Slit/Robo-mediated chemorepulsion of vagal sensory axons in the fetal gut. Dev Dyn 2013; 242 (01) 9-15
  • 61 Ratcliffe EM, Farrar NR, Fox EA. Development of the vagal innervation of the gut: steering the wandering nerve. Neurogastroenterol Motil 2011; 23 (10) 898-911
  • 62 Kupari J, Häring M, Agirre E, Castelo-Branco G, Ernfors P. An atlas of vagal sensory neurons and their molecular specialization. Cell Reports 2019; 27 (08) 2508-2523.e4
  • 63 Egerod KL, Petersen N, Timshel PN. et al. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms. Mol Metab 2018; 12: 62-75
  • 64 Chang RB, Strochlic DE, Williams EK, Umans BD, Liberles SD. Vagal sensory neuron subtypes that differentially control breathing. Cell 2015; 161 (03) 622-633
  • 65 Enomoto H, Crawford PA, Gorodinsky A, Heuckeroth RO, Johnson Jr EM, Milbrandt J. RET signaling is essential for migration, axonal growth and axon guidance of developing sympathetic neurons. Development 2001; 128 (20) 3963-3974
  • 66 Schwarz Q, Maden CH, Vieira JM, Ruhrberg C. Neuropilin 1 signaling guides neural crest cells to coordinate pathway choice with cell specification. Proc Natl Acad Sci U S A 2009; 106 (15) 6164-6169
  • 67 Kasemeier-Kulesa JC, Bradley R, Pasquale EB, Lefcort F, Kulesa PM. Eph/ephrins and N-cadherin coordinate to control the pattern of sympathetic ganglia. Development 2006; 133 (24) 4839-4847
  • 68 Rohrer H, Thoenen H. Relationship between differentiation and terminal mitosis: chick sensory and ciliary neurons differentiate after terminal mitosis of precursor cells, whereas sympathetic neurons continue to divide after differentiation. J Neurosci 1987; 7 (11) 3739-3748
  • 69 Rothman TP, Gershon MD, Holtzer H. The relationship of cell division to the acquisition of adrenergic characteristics by developing sympathetic ganglion cell precursors. Dev Biol 1978; 65 (02) 322-341
  • 70 Wolf E, Black IB, DiCicco-Bloom E. Mitotic sympathetic neuroblasts initiate axonal pathfinding in vivo. J Neurobiol 1999; 40 (03) 366-374
  • 71 Pattyn A, Guillemot F, Brunet JF. Delays in neuronal differentiation in Mash1/Ascl1 mutants. Dev Biol 2006; 295 (01) 67-75
  • 72 Bohuslavova R, Cerychova R, Papousek F. et al. HIF-1α is required for development of the sympathetic nervous system. Proc Natl Acad Sci U S A 2019; 116 (27) 13414-13423
  • 73 Levi-Montalcini R, Booker B. Destruction of the sympathetic ganglia in mammals by an antiserum to a nerve-growth protein. Proc Natl Acad Sci U S A 1960; 46 (03) 384-391
  • 74 Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 2001; 24: 677-736
  • 75 Korsching S. The neurotrophic factor concept: a reexamination. J Neurosci 1993; 13 (07) 2739-2748
  • 76 Crowley C, Spencer SD, Nishimura MC. et al. Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 1994; 76 (06) 1001-1011
  • 77 Smeyne RJ, Klein R, Schnapp A. et al. Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 1994; 368 (6468): 246-249
  • 78 Glebova NO, Ginty DD. Heterogeneous requirement of NGF for sympathetic target innervation in vivo. J Neurosci 2004; 24 (03) 743-751
  • 79 Granholm AC, Srivastava N, Mott JL. et al. Morphological alterations in the peripheral and central nervous systems of mice lacking glial cell line-derived neurotrophic factor (GDNF): immunohistochemical studies. J Neurosci 1997; 17 (03) 1168-1178
  • 80 Durbec PL, Larsson-Blomberg LB, Schuchardt A, Costantini F, Pachnis V. Common origin and developmental dependence on c-ret of subsets of enteric and sympathetic neuroblasts. Development 1996; 122 (01) 349-358
  • 81 Nishino J, Mochida K, Ohfuji Y. et al. GFR alpha3, a component of the artemin receptor, is required for migration and survival of the superior cervical ganglion. Neuron 1999; 23 (04) 725-736
  • 82 Bodmer D, Levine-Wilkinson S, Richmond A, Hirsh S, Kuruvilla R. Wnt5a mediates nerve growth factor-dependent axonal branching and growth in developing sympathetic neurons. J Neurosci 2009; 29 (23) 7569-7581
  • 83 Armstrong A, Ryu YK, Chieco D, Kuruvilla R. Frizzled3 is required for neurogenesis and target innervation during sympathetic nervous system development. J Neurosci 2011; 31 (07) 2371-2381
  • 84 Nurse CA, Piskuric NA. Signal processing at mammalian carotid body chemoreceptors. Semin Cell Dev Biol 2013; 24 (01) 22-30
  • 85 Nurse CA. Synaptic and paracrine mechanisms at carotid body arterial chemoreceptors. J Physiol 2014; 592 (16) 3419-3426
  • 86 López-Barneo J, Macías D, Platero-Luengo A, Ortega-Sáenz P, Pardal R. Carotid body oxygen sensing and adaptation to hypoxia. Pflugers Arch 2016; 468 (01) 59-70
  • 87 Le Douarin N, Le Lièvre C, Fontaine J. [Experimental research on the embryologic origin of the carotid body in birds]. C R Acad Hebd Seances Acad Sci D 1972; 275 (04) 583-586
  • 88 Kameda Y, Ito M, Gotoh N. Sympathetic ganglion origin of the carotid body glomus cells revealed by Mash1 and Frs2α2F/2F null mutant mice. Auton Neurosci 2007; 135 (1–2): 33
  • 89 Pardal R, Ortega-Sáenz P, Durán R, López-Barneo J. Glia-like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell 2007; 131 (02) 364-377
  • 90 Sobrino V, González-Rodríguez P, Annese V, López-Barneo J, Pardal R. Fast neurogenesis from carotid body quiescent neuroblasts accelerates adaptation to hypoxia. EMBO Rep 2018; 19 (03) e44598
  • 91 Macias D, Cowburn AS, Torres-Torrelo H, Ortega-Sáenz P, López-Barneo J, Johnson RS. HIF-2α is essential for carotid body development and function. eLife 2018; 7: e34681
  • 92 Kameda Y. Mash1 is required for glomus cell formation in the mouse carotid body. Dev Biol 2005; 283 (01) 128-139
  • 93 Hockman D, Adameyko I, Kaucka M. et al. Striking parallels between carotid body glomus cell and adrenal chromaffin cell development. Dev Biol 2018; 444 (Suppl. 01) S308-S324
  • 94 Lumb R, Tata M, Xu X. et al. Neuropilins guide preganglionic sympathetic axons and chromaffin cell precursors to establish the adrenal medulla. Development 2018; 145 (21) dev162552
  • 95 Huber K, Kalcheim C, Unsicker K. The development of the chromaffin cell lineage from the neural crest. Auton Neurosci 2009; 151 (01) 10-16
  • 96 Chan WH, Komada M, Fukushima T, Southard-Smith EM, Anderson CR, Wakefield MJ. RNA-seq of isolated chromaffin cells highlights the role of sex-linked and imprinted genes in adrenal medulla development. Sci Rep 2019; 9 (01) 3929
  • 97 Lohr J, Gut P, Karch N, Unsicker K, Huber K. Development of adrenal chromaffin cells in Sf1 heterozygous mice. Cell Tissue Res 2006; 325 (03) 437-444
  • 98 Rubin de Celis MF, Garcia-Martin R, Wittig D. et al. Multipotent glia-like stem cells mediate stress adaptation. Stem Cells 2015; 33 (06) 2037-2051
  • 99 Szabó PM, Pintér M, Szabó DR. et al. Integrative analysis of neuroblastoma and pheochromocytoma genomics data. BMC Med Genomics 2012; 5: 48
  • 100 Furness JB. The Enteric Nervous System. London, UK: Wiley; 2006
  • 101 Gershon MD. The Second Brain. New York City, NY: Harper Collins; 1998
  • 102 Goldstein AM, Hofstra RMW, Burns AJ. Building a brain in the gut: development of the enteric nervous system. Clin Genet 2013; 83 (04) 307-316
  • 103 Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 2012; 9 (05) 286-294
  • 104 Lundgren O. Sympathetic input into the enteric nervous system. Gut 2000; 47 (Suppl. 04) iv33-iv35 , discussion iv36
  • 105 Wang X, Chan AK, Sham MH, Burns AJ, Chan WY. Analysis of the sacral neural crest cell contribution to the hindgut enteric nervous system in the mouse embryo. Gastroenterology 2011; 141 (03) 992-1002.e1 , 6
  • 106 Kapur RP. Colonization of the murine hindgut by sacral crest-derived neural precursors: experimental support for an evolutionarily conserved model. Dev Biol 2000; 227 (01) 146-155
  • 107 Uesaka T, Nagashimada M, Enomoto H. GDNF signaling levels control migration and neuronal differentiation of enteric ganglion precursors. J Neurosci 2013; 33 (41) 16372-16382
  • 108 Pisano JM, Colón-Hastings F, Birren SJ. Postmigratory enteric and sympathetic neural precursors share common, developmentally regulated, responses to BMP2. Dev Biol 2000; 227 (01) 1-11
  • 109 Chalazonitis A, D'Autréaux F, Guha U. et al. Bone morphogenetic protein-2 and -4 limit the number of enteric neurons but promote development of a TrkC-expressing neurotrophin-3-dependent subset. J Neurosci 2004; 24 (17) 4266-4282
  • 110 Goldstein AM, Brewer KC, Doyle AM, Nagy N, Roberts DJ. BMP signaling is necessary for neural crest cell migration and ganglion formation in the enteric nervous system. Mech Dev 2005; 122 (06) 821-833
  • 111 Fu M, Vohra BPS, Wind D, Heuckeroth RO. BMP signaling regulates murine enteric nervous system precursor migration, neurite fasciculation, and patterning via altered Ncam1 polysialic acid addition. Dev Biol 2006; 299 (01) 137-150
  • 112 Faure C, Chalazonitis A, Rhéaume C. et al. Gangliogenesis in the enteric nervous system: roles of the polysialylation of the neural cell adhesion molecule and its regulation by bone morphogenetic protein-4. Dev Dyn 2007; 236 (01) 44-59
  • 113 Chalazonitis A, Pham TD, Li Z. et al. Bone morphogenetic protein regulation of enteric neuronal phenotypic diversity: relationship to timing of cell cycle exit. J Comp Neurol 2008; 509 (05) 474-492
  • 114 Memic F, Knoflach V, Sadler R. et al. Ascl1 is required for the development of specific neuronal subtypes in the enteric nervous system. J Neurosci 2016; 36 (15) 4339-4350
  • 115 Payette RF, Tennyson VM, Pomeranz HD, Pham TD, Rothman TP, Gershon MD. Accumulation of components of basal laminae: association with the failure of neural crest cells to colonize the presumptive aganglionic bowel of ls/ls mutant mice. Dev Biol 1988; 125 (02) 341-360
  • 116 Newgreen DF, Hartley L. Extracellular matrix and adhesive molecules in the early development of the gut and its innervation in normal and spotting lethal rat embryos. Acta Anat (Basel) 1995; 154 (04) 243-260
  • 117 Parikh DH, Tam PK, Lloyd DA, Van Velzen D, Edgar DH. Quantitative and qualitative analysis of the extracellular matrix protein, laminin, in Hirschsprung's disease. J Pediatr Surg 1992; 27 (08) 991-995 , discussion 995–996
  • 118 Delalande J-M, Barlow AJ, Thomas AJ. et al. The receptor tyrosine kinase RET regulates hindgut colonization by sacral neural crest cells. Dev Biol 2008; 313 (01) 279-292
  • 119 Durbec PL, Larsson-Blomberg LB, Schuchardt A, Costantini F, Pachnis V. Common origin and developmental dependence on c-ret of subsets of enteric and sympathetic neuroblasts. Development 1996; 122 (01) 349-358
  • 120 Simkin JE, Zhang D, Rollo BN, Newgreen DF. Retinoic acid upregulates ret and induces chain migration and population expansion in vagal neural crest cells to colonise the embryonic gut. PLoS One 2013; 8 (05) e64077
  • 121 Niederreither K, Vermot J, Le Roux I, Schuhbaur B, Chambon P, Dollé P. The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system. Development 2003; 130 (11) 2525-2534
  • 122 Taraviras S, Marcos-Gutierrez CV, Durbec P. et al. Signalling by the RET receptor tyrosine kinase and its role in the development of the mammalian enteric nervous system. Development 1999; 126 (12) 2785-2797
  • 123 Mwizerwa O, Das P, Nagy N, Akbareian SE, Mably JD, Goldstein AM. Gdnf is mitogenic, neurotrophic, and chemoattractive to enteric neural crest cells in the embryonic colon. Dev Dyn 2011; 240 (06) 1402-1411
  • 124 Schuchardt A, D'Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 1994; 367 (6461): 380-383
  • 125 Pichel JG, Shen L, Sheng HZ. et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 1996; 382 (6586): 73-76
  • 126 Sánchez MP, Silos-Santiago I, Frisén J, He B, Lira SA, Barbacid M. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 1996; 382 (6586): 70-73
  • 127 Enomoto H, Araki T, Jackman A. et al. GFR α1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 1998; 21 (02) 317-324
  • 128 Uesaka T, Enomoto H. Neural precursor death is central to the pathogenesis of intestinal aganglionosis in Ret hypomorphic mice. J Neurosci 2010; 30 (15) 5211-5218
  • 129 Uesaka T, Nagashimada M, Yonemura S, Enomoto H. Diminished Ret expression compromises neuronal survival in the colon and causes intestinal aganglionosis in mice. J Clin Invest 2008; 118 (05) 1890-1898
  • 130 Ratcliffe EM, Fan L, Mohammed TJ, Anderson M, Chalazonitis A, Gershon MD. Enteric neurons synthesize netrins and are essential for the development of the vagal sensory innervation of the fetal gut. Dev Neurobiol 2011; 71 (05) 362-373
  • 131 Ratcliffe EM, Setru SU, Chen JJ, Li ZS, D'Autréaux F, Gershon MD. Netrin/DCC-mediated attraction of vagal sensory axons to the fetal mouse gut. J Comp Neurol 2006; 498 (05) 567-580
  • 132 Barlow A, de Graaff E, Pachnis V. Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron 2003; 40 (05) 905-916
  • 133 Baynash AG, Hosoda K, Giaid A. et al. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 1994; 79 (07) 1277-1285
  • 134 Hosoda K, Hammer RE, Richardson JA. et al. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 1994; 79 (07) 1267-1276
  • 135 Chalazonitis A, Rothman TP, Chen J, Vinson EN, MacLennan AJ, Gershon MD. Promotion of the development of enteric neurons and glia by neuropoietic cytokines: interactions with neurotrophin-3. Dev Biol 1998; 198 (02) 343-365
  • 136 Liu M-T, Kuan Y-H, Wang J, Hen R, Gershon MD. 5-HT4 receptor-mediated neuroprotection and neurogenesis in the enteric nervous system of adult mice. J Neurosci 2009; 29 (31) 9683-9699
  • 137 Joseph NM, He S, Quintana E, Kim Y-G, Núñez G, Morrison SJ. Enteric glia are multipotent in culture but primarily form glia in the adult rodent gut. J Clin Invest 2011; 121 (09) 3398-3411
  • 138 Laranjeira C, Sandgren K, Kessaris N. et al. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J Clin Invest 2011; 121 (09) 3412-3424
  • 139 Kulkarni S, Micci M-A, Leser J. et al. Adult enteric nervous system in health is maintained by a dynamic balance between neuronal apoptosis and neurogenesis. Proc Natl Acad Sci U S A 2017; 114 (18) E3709-E3718
  • 140 Tilghman JM, Ling AY, Turner TN. et al. Molecular genetic anatomy and risk profile of Hirschsprung's disease. N Engl J Med 2019; 380 (15) 1421-1432
  • 141 Garcia-Barcelo MM, Tang CS, Ngan ES. et al. Genome-wide association study identifies NRG1 as a susceptibility locus for Hirschsprung's disease. Proc Natl Acad Sci U S A 2009; 106 (08) 2694-2699
  • 142 Tang CS, Sribudiani Y, Miao XP. et al. Fine mapping of the 9q31 Hirschsprung's disease locus. Hum Genet 2010; 127 (06) 675-683
  • 143 Cheng WW-C, Tang CS-M, Gui H-S. et al. Depletion of the IKBKAP ortholog in zebrafish leads to Hirschsprung disease-like phenotype. World J Gastroenterol 2015; 21 (07) 2040-2046
  • 144 Norcliffe-Kaufmann L, Slaugenhaupt SA, Kaufmann H. Familial dysautonomia: History, genotype, phenotype and translational research. Prog Neurobiol 2017; 152: 131-148
  • 145 Palma J-A, Norcliffe-Kaufmann L, Fuente-Mora C, Percival L, Mendoza-Santiesteban C, Kaufmann H. Current treatments in familial dysautonomia. Expert Opin Pharmacother 2014; 15 (18) 2653-2671
  • 146 Norcliffe-Kaufmann L, Kaufmann H. Familial dysautonomia (Riley-Day syndrome): when baroreceptor feedback fails. Auton Neurosci 2012; 172 (1-2): 26-30
  • 147 Slaugenhaupt SA, Blumenfeld A, Gill SP. et al. Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 2001; 68 (03) 598-605
  • 148 Anderson SL, Coli R, Daly IW. et al. Familial dysautonomia is caused by mutations of the IKAP gene. Am J Hum Genet 2001; 68 (03) 753-758
  • 149 Boone N, Bergon A, Loriod B. et al. Genome-wide analysis of familial dysautonomia and kinetin target genes with patient olfactory ecto-mesenchymal stem cells. Hum Mutat 2012; 33 (03) 530-540
  • 150 Goffena J, Lefcort F, Zhang Y. et al. Elongator and codon bias regulate protein levels in mammalian peripheral neurons. Nat Commun 2018; 9 (01) 889
  • 151 Nedialkova DD, Leidel SA. Optimization of codon translation rates via tRNA modifications maintains proteome integrity. Cell 2015; 161 (07) 1606-1618
  • 152 George L, Chaverra M, Wolfe L. et al. Familial dysautonomia model reveals Ikbkap deletion causes apoptosis of Pax3+ progenitors and peripheral neurons. Proc Natl Acad Sci U S A 2013; 110 (46) 18698-18703
  • 153 Jackson MZ, Gruner KA, Qin C, Tourtellotte WG. A neuron autonomous role for the familial dysautonomia gene ELP1 in sympathetic and sensory target tissue innervation. Development 2014; 141 (12) 2452-2461
  • 154 Dietrich P, Alli S, Shanmugasundaram R, Dragatsis I. IKAP expression levels modulate disease severity in a mouse model of familial dysautonomia. Hum Mol Genet 2012; 21 (23) 5078-5090
  • 155 Morini E, Dietrich P, Salani M. et al. Sensory and autonomic deficits in a new humanized mouse model of familial dysautonomia. Hum Mol Genet 2016; 25 (06) 1116-1128
  • 156 Abashidze A, Gold V, Anavi Y, Greenspan H, Weil M. Involvement of IKAP in peripheral target innervation and in specific JNK and NGF signaling in developing PNS neurons. PLoS One 2014; 9 (11) e113428
  • 157 Naftelberg S, Abramovitch Z, Gluska S. et al. Phosphatidylserine ameliorates neurodegenerative symptoms and enhances axonal transport in a mouse model of familial dysautonomia. PLoS Genet 2016; 12 (12) e1006486
  • 158 Tourtellotte WG. Axon transport and neuropathy: relevant perspectives on the etiopathogenesis of familial dysautonomia. Am J Pathol 2016; 186 (03) 489-499
  • 159 Ohlen SB, Russell ML, Brownstein MJ, Lefcort F. BGP-15 prevents the death of neurons in a mouse model of familial dysautonomia. Proc Natl Acad Sci U S A 2017; 114 (19) 5035-5040
  • 160 Ogier M, Wang H, Hong E, Wang Q, Greenberg ME, Katz DM. Brain-derived neurotrophic factor expression and respiratory function improve after ampakine treatment in a mouse model of Rett syndrome. J Neurosci 2007; 27 (40) 10912-10917
  • 161 Kline DD, Ogier M, Kunze DL, Katz DM. Exogenous brain-derived neurotrophic factor rescues synaptic dysfunction in Mecp2-null mice. J Neurosci 2010; 30 (15) 5303-5310
  • 162 Schmid DA, Yang T, Ogier M. et al. A TrkB small molecule partial agonist rescues TrkB phosphorylation deficits and improves respiratory function in a mouse model of Rett syndrome. J Neurosci 2012; 32 (05) 1803-1810
  • 163 Cutz E, Ma TK, Perrin DG, Moore AM, Becker LE. Peripheral chemoreceptors in congenital central hypoventilation syndrome. Am J Respir Crit Care Med 1997; 155 (01) 358-363
  • 164 Dubreuil V, Ramanantsoa N, Trochet D. et al. A human mutation in Phox2b causes lack of CO2 chemosensitivity, fatal central apnea, and specific loss of parafacial neurons. Proc Natl Acad Sci U S A 2008; 105 (03) 1067-1072
  • 165 Burns AJ, Goldstein AM, Newgreen DF. et al. White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies. Dev Biol 2016; 417 (02) 229-251