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Introduction

We have experienced during the last decades a continuous
progress in treating the complications of atherosclerosis such
as myocardial infarction (MI), stroke, and acute limb ischemia
by diagnostic improvements and continued development of
new medical devices and drugs. Still, a large part of patients
with acute ischemia does not manage in time to profit from
these medical advances.1 Thus, the quest for novel targets
aimed at a further individual reduction of the risk for a

cardiovascular event by preventing atherosclerosis is justified.
It has been argued that the sole causal risk factor for athero-
sclerosis is simply hypercholesterolemia and that other epi-
demiologically associated factors are either exacerbating or
only bystander phenomena.2 It may be that by abolishing
circulating low-density lipoprotein (LDL)-cholesterol athero-
genesis might be completely preventable; whether such an
approach is realistic remains questionable. In themeantime, it
will be worthwhile to understand the mechanisms of athero-
genesis to identifynovel targets. Beyondthemetabolic, there is
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Abstract The pathogenesis of atherosclerotic vascular disease is driven by a multitude of risk
factors intertwining metabolic and inflammatory pathways. Increasing knowledge
about platelet biology sheds light on how platelets take part in these processes from
early to later stages of plaque development. Recent insights from experimental studies
and mouse models substantiate platelets as initiators and amplifiers in atherogenic
leukocyte recruitment. These studies are complemented by results from genetics
studies shedding light on novel molecular mechanisms which provide an interesting
prospect as novel targets. For instance, experimental studies provide further details
how platelet-decorated von Willebrand factor tethered to activated endothelial cells
plays a role in atherogenic monocyte recruitment. Novel aspects of platelets as
atherogenic inductors of neutrophil extracellular traps and particularities in signaling
pathways such as cyclic guanosine monophosphate and the inhibitory adaptor
molecule SHB23/LNK associating platelets with atherogenesis are shared. In summary,
it was our intention to balance insights from recent experimental data that support a
plausible role for platelets in atherogenesis against a paucity of clinical evidence
needed to validate this concept in humans.
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an intricate chronic inflammatory component to consider.
With the CANTOS trial, the hypothesis that cardiovascular
events can be prevented by blocking a potent inflammatory
target such as interleukin-1β has been proven.3 However, a
clear cardiovascular benefit was outbalanced by themoderate
effect size and fatal infections warranting further refinement
through an individualized approach or testing new inflamma-
tory targets.4 Especially T cells or monocytes, giving rise to
intimal macrophages, but also almost every circulating blood
cell type, havebeendescribed inplaques or to contribute to the
inflammatory infiltrate and stability of the plaque.5 Irrespec-
tive of their pivotal role in arterial thrombosis, a causative role
of platelets in atherogenesis has been suggested in the 1960s
based on the concept that platelets represent a link between
hemodynamic factors, lipids, and the characteristic localiza-
tion of plaques.6 The concept of platelets as important inflam-
matory agents has been refreshed again in 2005 byGawaz and
colleagues explaining the proinflammatory machinery of
platelets that intimately links thrombosis andatherosclerosis.7

In recent years, rare genetic mutations with atherosclerosis
phenotypes have been discovered and genome-wide associa-
tion studies as well as Mendelian randomization studies have
emerged as powerful tools generating big data that shed light
and spark discussions about how platelets and blood cellsmay
contribute to humanatherosclerosis, defining novel targets for
primary prevention.

Platelets, Initiators, and Amplifiers of
Atherogenic Leukocyte Recruitment

Nearly our entire knowledge about the mechanisms of how
platelets affect inflammation and atherosclerosis originates
from animal models; preclinical data, however, have only
partially been translated to the human system. The current
understanding is that platelet activation is a requirement for
their atherogenic properties. Hyperreactive platelets are
associated with greater atherosclerotic plaque burden and
increased plaque vulnerability, especially in culprit lesions in
patients undergoing percutaneous coronary intervention
(PCI) as measured by intravascular ultrasound (IVUS), and
patients with more extensive coronary atherosclerosis have
a higher number of hyperreactive platelets.8,9 It is thus
possible that increased platelet reactivity may potentiate
arterial thrombosis at the time of rupture, thereby driving
inflammation and atherosclerotic lesion progression.

A crucial factor after platelet activation is the upregulation
and activation of adhesion receptors that initiate and enhance
the contact of platelets with (1) leukocytes to form aggregates
andwith (2) endothelial cells or their underlyingmatrixwhen
exposed after injury. Keyplayers areαIIbβ3, P-selectin, thevon
Willebrand factor (VWF) receptor complex (GPIbα/V/IX), and
glycoprotein VI (GPVI).7 These adhesion molecules and their
binding partners lead to an increase in rolling and firm
adhesionofplateletsonendothelial cells, and tethercirculating
leukocytes to the artery as a requirement for subsequent
migration into the intima.10Other adhesionmolecules behave
in a counterintuitive way: the selective genetic deficiency of
JAM-A in platelets results in hyperreactive platelets and an

increase in the formation of atherosclerotic lesions as JAM-A
interacts with and inhibits αIIbβ3 activation, which also
results in chemokine release (►Fig. 1).11 However, a cell-
type-dependentexpressionof JAM-Amaybedecisivewhether
JAM-A is atherogenic or atheroprotective. The expression of
JAM-A on endothelial cells guides monocytes into flow-de-
pendent predilection sites of atherosclerosis and JAM-A plas-
ma levels are increased in coronary artery disease (CAD).12,13

Therefore, generalized JAM-A inhibition could turn out to be a
two-sided sword.

Several functionally relevant chemokines are expressed
and released by platelets.14 Chemokines tend to oligomerize
which leads to the formation of mostly homodimers and
heterodimersofeither aCC-type (interactionof theN-terminal
part) or a CXC-type (extension of the β-sheet). This is impor-
tant because atherogenic monocyte recruitment by CCL5,
CXCL4, and their heterodimers depends also on these features.
It can be therapeutically addressed by peptide inhibitors that
are derived from amino acid sequences of the interface and
protect from atherosclerosis.15,16

GP1bα Interactions with von Willebrand
Factor Mediate Platelet Adhesion and
Promote Atherosclerosis

Platelets have been described as initiators of atherosclerosis
because they adhere to the arterial endothelium of the
carotid artery in ApoE�/� mice before atherosclerotic lesions
become visible in a VWF- and GP1b-dependent process.17

VWF is stored and released upon injury or under inflamma-
tory conditions from endothelial Weibel–Palade bodies or
platelet α-granules. It bridges collagen and activates a recep-
tor complex upon multimerization (GPIbα/V/IX), which is
exclusively expressed bymegakaryocytes and platelets lead-
ing to platelet adhesion on endothelial cells and driving early
as well as midstage atherosclerosis in mouse models.17 The
presence of activated VWF on atherosclerosis-prone endo-
thelium has been confirmed by molecular imaging detecting
GP1b-conjugated microbubbles by ultrasound in vivo.18

Notably, the source of VWF affects its functionality, possibly
by altered glycosylation such as reduced N-terminal sialyla-
tion and reduced affinity for GPIbα.19 Thismight explainwhy
in mouse models only endothelial cell-derived VWF but not
platelet-derived VWF promotes atherosclerosis.20

After binding and activation of endothelial CD40 by CD40L,
ultralarge VWF–platelet strings arise and facilitate monocyte
diapedesis.21 In conjunction with a reduced activity of
ADAMTS13, which cleaves ultralarge VWF, and consequently
higher amounts of ultralarge VWF in plasma of patients with
CAD, this mechanism has been proposed to contribute to
enhanced monocyte recruitment at atherosclerotic predilec-
tion sites.21 Elevated VWF levels in humans are strongly
associated with an increased risk of ischemic cardiovascular
events. Whether this relation is causal or whether increased
VWF levels just reflect disturbances of endothelial function
remains to be elucidated.22 It would be very interesting to
translate these finding to human genetic disorders that are
comparable to mouse models. Robust large-scale prospective
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clinical data thatconfirmaprotection fromatherosclerosis are,
however, missing so far for both the rare Bernard–Soulier
syndrome (GP1bα deficiency) and the common von Wille-
brand disease (VWD) where VWF is dysfunctional and levels
are decreased. Lately, a Swedish registry of 2,790 individuals
found that cardiovascular disease (CVD) mortality was more
than halved in patients with VWD compared with controls
while hospitalization due to a cardiovascular event was
increased by 30%.23 This might indicate an increase of rup-
ture-prone lesions or lower stability of atherosclerotic lesions,
whereas the lower mortality might be associated with a
protection from arterial thrombosis. In aggregate, VWF

appears to be a therapeutic target but experimental and
clinical data are not consistent and require further
investigation.

P-selectin

P-selectin is expressed on both endothelial cells and platelets.
It is known for quite some time that the presence of P-selectin
on both cellular entities can exacerbate atherosclerosis as
shown by bone marrow transplantation models and adoptive
transfer of P-selectin-deficient platelets.24,25 More recently,
based on these findings and aiming to prevent the anti-

Fig. 1 Atheroprotective role of platelet JAM-A. The integrin αIIbβ3 and JAM-A are coexpressed on platelets. Either by direct interaction or
possibly via contacts through intermediary proteins lead the presence of JAM-A to reduced outside-in signaling of αIIbβ3 (A). Genetic depletion
of JAM-A from platelets results in increased outside-in signaling and consequently hyperreactive platelets (B). These hyperreactive platelets tend
to form aggregates and complexes with monocytes and interact with dysfunctional endothelium to release chemokines such as CXCL4, CCL5,
and CXCL12 which drives the generation of early atherosclerotic lesions.
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inflammatory and antithrombotic platelet-dependent pro-
cesses that are instrumental in atherogenesis, a P-selectin
blocking monoclonal antibody (inclacumab) has been devel-
oped and tested in humans with NSTEMI, which resulted in
decreased peri-interventional myocardial damage.26 As a side
note, P-selectin expression is enhanced in platelets and endo-
thelial cells in patients with sickle cell disease contributing to
the risk of vaso-occlusive crises. A humanized monoclonal
antibody, crizanlizumab, has been shown in the SUSTAIN trial
to protect patientswith sickle cell disease fromvaso-occlusive
crises and has recently been approved by the Food and Drug
Administration for this indication.27

Although promising, randomized controlled trials over a
longer period in a preventive setting and monitoring plaque
development would be warranted to draw conclusions on
beneficial effects of blocking P-selectin on atherogenesis in
humans.

Glycoprotein VI

GPVI is one more target in atherogenesis. GPVI is a platelet-
specific membrane protein that is primarily known for its
interaction with fibrillar collagen but other ligands such as
fibronectin or vitronectin are also known.28 These ligands are
thought to be the binding partners for GPVI in atherogenesis
since the subendothelial localization of collagen precludes
their encounter at intact endothelium.29 Platelets adhere to
the endothelium of early atherosclerotic arterieswhich can be
diminished by antagonists like GPVI-Fc that can be coupled to
microbubbles or by monoclonal antibodies, which goes hand
in handwith a lesser extent of atherosclerosis.29,30 The inhibi-
tion of GPVI appears to be especially attractive as side effects
are expected to be low since humanswith a genetic deficiency
of GPVI and respective knockout mice have only a mild
bleeding diathesis.31 GPVI-Fc is envisioned to be powerful in
preventing atherothrombosis without causing bleeding be-
cause collagen is an important component of atherosclerotic
plaque activating platelets via GPVI and GPVI-Fc is most
effective under high shear stress, but not low shear rates.32,33

GPVI-Fc (revacept) has entered clinical trials. A phase I trial
showed that the drugwaswell tolerated and currently phase II
trials arebeingperformedtotest itseffectiveness inpreventing
periprocedural PCI-associated events.34,35 The parenteral ap-
plication of GPVI-Fc however hampers its use in primary
prevention. An alternative option is orally available inhibitors
of the Bruton’s tyrosine kinase that interfere with the down-
stream signaling of GPVI and GPIb.36–38

Platelet and NETs in Atherosclerosis: Guilty
by Association

Activities of platelets and neutrophils are closely intertwined
andjoin forces in inflammationandatherosclerosis. Formation
of neutrophil extracellular traps (NETs; NETosis) emerges as a
potential important link between these cellular entities.39

Upon activation, neutrophils release decondensed chromatin
decorated with granule proteins forming extracellular fibers
that bind and kill bacteria.40 Critical for the unfolding of the

chromatin structure is the enzyme peptidylarginine deimi-
nase (PAD4) that catalyzes the citrullination of histones there-
by uncoiling chromatin.41

The presence of NETs has been shown in sections of human
atherosclerotic lesions, both at the luminal aspect and within
murine atherosclerotic lesions.42,43A role of NETs in propagat-
ing atherosclerosis is further supported by the finding that
pharmacological interventions blocking NET formation via
PAD4 inhibition can reduceatherosclerosis andarterial throm-
bosis in mice.44 Several mechanisms have been proposed to
explain the proatherosclerotic role of NETs: e.g., neutrophil-
derived granule proteins (e.g., cathelicidin) stimulate a type I
interferon response and cause endothelial dysfunction45 and
cholesterol crystals induceNETswhichprimemacrophages for
atherogenic IL-1β release.43 Furthermore, smoothmuscle cells
(SMCs) from atherosclerotic lesions attract neutrophils and
trigger NETosis which in turn causes arterial tissue damage
and inflammation.46

A role of platelets in NETosis was noted by observing that
plasma from humans suffering from severe sepsis induced
TLR4-dependent platelet–neutrophil interactions, leading to
the production of NETs and clearing of bacteria.47 Under
various conditions of activation, platelets have been demon-
strated to trigger neutrophils to expel their NETs. In addition,
platelet inhibitors proved to be protective by preventing NET
formation in neutrophil–platelet-dependent diseases such as
acute lung injury and atherosclerosis.39,48 Furthermore, in
chronic inflammation platelet microparticles contribute to
vasculopathy. This is fostered by their interaction with
neutrophils and depends on the nuclear danger molecule
HMGB1, which triggers neutrophils to cast their NETs.49,50

Platelets store and release chemokines that can form
heteromers such as the chemokine CXCL4 that binds to
CCL5 leading to synergistic effects on leukocyte recruitment
and which can elicit NETosis in combination but not alone.51

Blocking this heterodimerization reduces atherosclerosis,
lung injury, and the formation of NETs.51,52 Reciprocally,
cell-free NETs induce platelet aggregation which depends
on cathepsin G.53

In summary, both activated platelets and NETs alone have
been shown to play a role in experimental atherosclerosis.
However, there is interdependency as activated platelets bind
to and activate neutrophils which eventually leads to NETo-
sis.39,45,54 What is unknown so far is to what extent each
component drives atherosclerosis independently. Although it
is known that platelets induce NETs which then play a role in
atherosclerosis, the concept that NETs represent a causative
link between activated platelets and atherosclerosis has yet to
be proven.

Platelets and Lipids in Atherosclerosis:
A Complex Relationship

Based on the LIPID MAPS classification system, lipids can be
classified into eight categories (fatty acids [FAs], glycerolipids,
[glycerol-]phospholipids, sphingolipids, sterols, prenols, sac-
charolipids, and polyketines).55While all these are detectable
in platelets, only few examples of prenols, saccharolipids, and
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polyketines have been detected and are therefore not further
discussed in this section.56 Nevertheless, several prenols,
saccharolipids, and polyketines have important functions in
platelet biology and have been reviewed elsewhere.57–59

Polyunsaturated Fatty Acids Are Regulators of Platelet
Activity and Affect Atherosclerosis
FAs canharbormultipledoublebonds (PUFAs, polyunsaturated
FAs). The position of the first double bond at the methyl end
(omega, opposite the carboxylgroup)explains the terminology
so that omega-3 (n-3) FAs such as eicosapentaenoic acid (EPA)
are differentiated fromomega-6 FAs like arachidonic acid (AA).
Integrated into phospholipids of the plasma membrane, FAs
influence the fluidity and stability of cell membranes. Bulkier
molecules such as the n-3 FA docosaheptaenoic acid result in
greater membrane fluidity than FAs that fit better into the
membrane geometry such as EPA.60 This may have important
implications for the activityofplatelets andothercell types and
be one of various reasons why clinical trials in cardiovascular
prevention using PUFA (consisting of mixtures) reported
ambiguous results. Nevertheless, the REDUCE-IT trial, which
corroborates the significant protective effects of pure EPA on
cardiovascular events in the JELIS study, reignited the interest
in using omega-3 acids in preventing atherosclerosis.61,62

Various preclinical data shed some light on the manifold,
incompletely understood mechanisms, including reduced
inflammation by effects on T cells and enhancement of resolu-
tion by lipid mediators, enhanced cholesterol efflux, antioxi-
dant properties, and last but not least inhibitory effects on
platelets.60Ahint that these effects onplatelet activationmight
be clinically relevant comes from the tendency toward more
bleeding events under EPA in REDUCE-IT.61 Feeding EPA to
rabbits increases the incorporation of EPA into platelets and
reducescollagen-inducedplatelet aggregation.63FAsarepartof
phospholipids in the platelet membrane and get released by
cytoplasmic phospholipase A2 to serve as a substrate for
platelet cyclooxygenase (COX-1), lipoxygenase (12-LOX), and
CYP50 epoxygenases yielding various platelet inhibitors and
activators. While AA serves as a precursor for the potent
platelet activator thromboxane A2 and an opponent of the
potent platelet inhibitor PGI2 (prostacyclin), EPA can be me-
tabolized in platelets to various inhibitory lipids like throm-
boxaneA3.59These lipidmediators have a short half-life so that
they are generated on demand. Adding AA to whole blood
rapidly induces platelet activation in an autocrine manner via
thromboxanebinding to itsGi-coupled receptorTPonplatelets,
whereas PGI2 isproducedbyendothelial cells andactivates ina
paracrine fashion its Gs-coupled receptor IP. Deletion of TP
results in diminished platelet reactivity and reduced athero-
sclerosis, whereas the knockout of IP accelerated atherosclero-
sis and decreased the stability of the lesions. Hence it appears
that platelet activation through lipid mediators can be an
important regulator of atherosclerosis.64–66 The platelet-spe-
cific effects of low-dose aspirin result from irreversible inhibi-
tion of COX-1 in platelets. Effects on PGI2 and thromboxane A2
are only the tip of the iceberg as low-dose aspirin in humans
leads to drastic changes of the platelet FA profile and of other
lipids that on top seem to vary considerably between donors.56

Aspirin is established in secondary but not in primary cardio-
vascular prevention. In humans low-dose aspirin completely
abrogates platelet-derived thromboxane generation without
reducing C-reactive protein (CRP) levels.67Whether aspirin can
reduce atherosclerosis in humans remains unclear; in light of
many disappointing results in the setting of primary preven-
tion, the latest being the ASPREE trial, large effects on athero-
genesis seemunlikely.68A failure of low-dose aspirin to reduce
residual inflammation, as assessed with the most established
prognostic risk marker in CVD, CRP, could be a possible
explanation.

Sphingolipids
Sphingolipids are components of the cell membrane and
regulate signaling. They comprise a group of molecules that
are derivatives of ceramide which is mainly generated at the
cytosolic side of the endoplasmic reticulum by assembling
the amino acid serine and palmitoyl-CoA. Enzymatic reac-
tions with ceramide as a substrate result in sphingosine and
further steps produce sphingosine-1-phosphate (S1P), glu-
cosylceramide, lactosylceramide, and sphingomyelin, which
are important signaling molecules in inflammation and
atherogenesis.69–71 Analysis of atherosclerotic plaques
revealed that sphingolipids are important plaque compo-
nents and contribute to plaque inflammation and stability.72

Different to the on-demand metabolism of FA, platelets
store S1P in granules and in nongranular compartments.73

Platelet activation leads to a release of S1P upon activation.
As platelets express S1P receptors such as S1PR1, this results in
a positive feedback mechanism.74 Moreover, expression of
S1PR1 onmegakaryocytes is required for normal thrombopoi-
esis as S1P drives cytoplasmic extensions of megakaryocytes
into bone marrow sinusoids to shed proplatelets into the
circulation.75 Although S1P is considered a proinflammatory
mediator, platelet-derived S1P may have atheroprotective
properties: it accelerates endothelial cell proliferation and
drives endothelial cell migration.76 Sphingomyelin affects
platelet reactivity through its incorporation into and forma-
tion of specialized regions within platelet membranes, lipid
rafts, where important platelet adhesion receptors including
GPVI and GPI-V-IX or scavenger receptors such as CD36 are
embedded and that are required for a proper function.57

Another lipid species, phospholipids, is essential in these rafts
fostering signaling through G-protein-coupled receptors by
providing important second messengers.77

(Glycero-)Phospholipids
Phospholipids are the main component of cell membranes
composed of glycerol derivatized by two hydrophobic acyl
groups and a polar phosphate group. Depending on the
molecules attached to the phosphate, phosphatidic acid
(PA), phosphatidylcholine (PC), phosphatidylethanolamine
(PE), phosphatidylserine (PS), and the phosphatidylinositol-
related species (PI-PIP3) are classified. Cleavage of phospho-
lipids by phospholipase C generates phosphoinositide
second messengers in signal transduction (e.g., PIP, IP3)
and diacylglycerol, whereas lysophosphatidylcholine (LPC)
arises after removal of an alkyl group of PC and a subsequent
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step by the phospholipase D autotaxin forms lysophospha-
tidic acid (LPA).

Under resting conditions the aminophospholipids PE and
PS remain located at the inner leaflet of the platelet mem-
brane. Platelet activation and apoptosis lead to Ca2þ-depen-
dent activation of a phospholipid transporter, the scramblase
TMEM16F, that leads to the translocation of PS and PE to the
outer leaflet thereby exposing binding sites for Annexin V
and coagulation factors.78

Furthermore, the comparison of the platelet lipid profiles
from CAD patients with matched controls reveals that LPC is
weakly detectable in platelets of healthy persons, but in-
creased by several orders of magnitude in CAD patients and
also found in vulnerable atherosclerotic plaques.79,80 LPC has
been reported to be concentrated in microvesicles from
activated platelets which are important markers and factors
in vascular inflammation and atherosclerosis.81 Lipid profil-
ing of platelet MV identified differences in the composition
with higher amounts of PC and LPC compared with the
activated parent platelets.80 Platelets express the lysophos-
pholipid receptor G2A/GPR132 that is responsible for platelet
activation through LPC.80

LPA, a derivative of LPC, is implicated in platelet activation
and atherosclerosis signaling through G-protein-coupled
receptors of the LPAR (EDG) family. LPA is produced by
platelets through phospholipase A1 and autotaxin and is
one active component of mildly oxidized LDL and athero-
sclerotic plaques in platelet activation.82,83

Sterols/Cholesterol
Hypercholesterolemia in humans correlates with platelet
count.84 As specified above, the relevance of the platelet count
and platelet indices in humans for atherosclerosis remains
vague/obscure. However, antibody-induced selective depletion
of platelets inhibits atherogenesis significantly.85 Inversely, it is
conceivable that an increased generation of platelets by hyper-
cholesterolemia is atherogenic although the mechanisms how
cholesterol levels modulate thrombopoiesis are unresolved.86

Reducing cholesterol and circulating LDL levels affects platelet
reactivity by cholesterol-dependent and pleiotropic, cholester-
ol-independenteffects.87Clinically, pleiotropic, antithrombotic
actions of statins have been concluded from the JUPITER trial
that showed a significant reduction of deep vein thrombosis in
thecohort treatedwithrosuvastatin.88Whichmolecularmech-
anisms lie behind these assumed antiplatelet effects have been
investigated in preclinical studies. Statins inhibit the synthesis
of cholesterol by blocking HMG-CoA-reductase and as a side
effect other lipids such as farnesyl pyrophosphate and geranyl-
geranyl pyrophosphate are missing for posttranslational pre-
nylation of the small GTP-binding proteins Rho and Rac so that
their activity is reduced.89 Rho and Rac are ubiquitously
expressed and are indispensable regulators of the platelet
cytoskeleton with various effects on downstream pathways
including nitric oxide signaling.90 However, the size of the
attributed pleiotropic effects on platelet reactivity in vivo is
difficult to separate from the effects that occur as a result of the
reduction of cholesterol: hypercholesterolemia alone increases
platelet activation via binding of LDL and oxLDL to platelet

CD36.91,92 Novel treatment options for hypercholesterolemia
as antibodies against PCSK9 also display antiplatelet character-
istics: in a small clinical study the treatment with PCSK9
inhibitors resulted in a decrease of platelet P-selectin, platelet
aggregation, and released proteins from α-granules like
CXCL4.93 Levels of circulating PCSK9 correlate with platelet
activity in acute coronary syndrome patients.94

Genetic Evidence for a Role of Platelets in
Coronary Artery Disease

Platelet Parameters
Hematologic parameters including platelet count or mean
platelet volume (MPV) have been associated with atheroscle-
rosis and cardiovascular risk.95,96 Larger platelets have been
described to bemore reactive and to have a greater prothrom-
botic potential so that MPV has been found to be a useful
prognostic parameter in MI.95 Although MPV is a readily
available parameter with implications to platelet function, it
is not standardized. Multiple factors including preanalytical
issues such as time-dependent swelling of platelets in EDTA
affect MPV so that using MPV is not a standard in clinical
practice.97As hematologic parameters showhigh interindivid-
ual variability, large genome-wide analyses of hematologic
parameters have been undertaken to identify genetic variants
that influence traits of red andwhite blood cell counts, but also
platelet indices. ►Supplementary Table S1 (available in the
online version) gives an overview of studies reporting genetic
associations with platelet phenotypes. In 2009 a first large
systematic genome-wide meta-analysis98 identified 15 loci
determining the MPV that jointly explained 8.6% of the total
geneticvariance inMPV,butonly to0.5%of theplatelet count.98

Themost interesting region associatedwith platelet count and
MPV was a haplotype restricted to Europeans located on
chromosome 12q24 comprising 10 common single nucleotide
polymorphisms (SNPs) including a nonsynonymous SNP
Arg262Trp (rs3184504) in the gene SH2B3 associated with
atherosclerosis andMI (see below). This haplotype is of impor-
tancebecause it significantlyassociateswithprematureCAD.99

In more recent and even larger studies searching for cardio-
metabolic risk factors inEuropeans,morelociandvariantshave
been discovered and refined that are more strongly associated
withplatelet count and explain thevariance of platelet count to
more than 8%.100 Signals for platelet count were mostly found
within genes for congenital (GFI1B, THPO) or acquired (APOH)
platelet disorders, underscoring that more subtle genetic vari-
ation within genes known to contain loss-of-function variants
may reflect interindividual differences in these complex
traits.100 In the last and so far most powerful study, more
than1,000variantswere identified to defineplatelet indices. In
a Mendelian randomization study these variants displayed a
weak, unexpectedly inverse relationship of coronary heart
disease (CHD) and MPV suggesting shared causal pathways
for CHD andMPV, although themechanisms behind remain to
be clarified.101

Taken together the results of these studies suggest that
functional properties are more important for the role of
platelets in atherosclerosis than the number of platelets

Thrombosis and Haemostasis Vol. 120 No. 11/2020

Platelets in Atherosclerosis Kessler et al. 1497

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



(►Supplementary Table S1, available in the online
version).101–108

As a prominent example, the cytochrome P450 2C19
genotype has been associated with a response to clopidogrel
therapy.109,110Genome-wide analyses also identified several
genetic variants identified with platelet aggregation after
stimulationwith different agonists.111 Additionally, genes or
pathways involved in platelet biology or function have also
been identified to be associated with coronary atherosclero-
sis (for a review, see Erdmann et al112), e.g., the SH2B3 gene
and nitric oxide signaling.

SH2B3/LNK—A Coronary Artery Disease Risk Gene with a
Role in Platelet Function
As stated above, the SH2B3 gene is located on 12q24 at a very
complex genomic locus which shows associations with a
variety of traits, e.g., type 1 diabetes,113 blood pres-
sure,114,115 celiac disease,116 but also CAD99 and platelet
count.98,101 The gene encodes LNK, an inhibitory adaptor
protein regulating cytokine signaling and cell cycle in endo-
thelial and hematopoietic cells.117,118 LNK prevents the
signal transduction from a receptor tyrosine kinase to down-
stream JAK2, such as the signaling from TPO via MPL that
triggers thrombopoiesis. Therefore, loss of LNK signaling
results in thrombocytosis and increased platelet activation
by αIIbβ3 outside-in signaling.117,119,120 In a study designed
to explain the mechanism of the common CAD risk variant
which results in a loss of function of LNK, Wang et al
demonstrated that this variant causes an increase in platelet
count especially under proatherogenic conditions, i.e., high-
cholesterol levels. Lnk�/� mice displayed enhanced platelet
activation, more leukocyte–platelet complexes, and acceler-
ated arterial thrombosis and atherosclerosis. Specifically,
hypercholesterolemia in Lnk�/� mice led to enhanced
interleukin-3/granulocyte–macrophage colony-stimulating
factor receptor signaling but also increased platelet activa-
tion.121 In summary, platelet LNK is now an experimental
and genetic link between, on the one side, high cholesterol
levels, high platelet counts, high platelet reactivity and on the
other side increased atherosclerotic plaque formation and
MI. Enhancing LNK to inhibit platelet generation and activa-
tionmight be an innovative strategy to reduce cardiovascular
risk

Multiple Genes Involved in Nitric Oxide Signaling
Several genes which encode proteins that play a prominent
role in nitric oxide signaling have been associated with CAD
in genome-wide association studies (for a review see
Wobst et al122): NOS3, which encodes the endothelial nitric
oxide synthase (eNOS),123 GUCY1A1 (formerly named
GUCY1A3), which encodes the α1-subunit of the soluble
guanylyl cyclase (sGC),124 MRVI1, which encodes inositol
1,4,5-trisphosphate receptor-associated cyclic guanosine
monophosphate (cGMP) kinase substrate (IRAG),125 and
PDE5A, which encodes phosphodiesterase 5A (PDE5A), are
the most prominent examples. However, several genes
encoding proteins in related pathways, e.g., PDE3A, encod-
ing phosphodiesterase 3A,126 or the genes EDN-1127,128

and EDNRA,124 encoding endothelin 1 and its receptor,
respectively, have also been associated with CAD.

In the vasculature, nitric oxide is produced by eNOS
mainly in endothelial cells leading to production of
the second messenger cGMP in, e.g., vascular SMCs (VSMCs)
and platelets by sGC. Accumulation of cGMP leads to relaxa-
tion of VSMC129 and inhibition of platelet aggregation,
respectively.130,131 One mechanism is that the elevation of
endogenous NO levels leads to reducing the thiol reductase
activity of protein disulfide isomerase by S-nitrosylation
which prevents platelet aggregation, α-granule release,
and thrombin generation on platelets.132 These NO effects,
which also have been shown to influence, e.g., vascular
remodeling133 or vascular inflammation,134,135 are limited
by the breakdown of cGMP into GMP by PDE5A. Pharmaco-
logical modulation of these processes is used in a variety of
diseases: supplementation of nitric oxide donors to relief
angina pectoris, stimulators of sGC in pulmonary hyperten-
sion and heart failure, and PDE5A inhibitors in pulmonary
hypertension and erectile dysfunction. MRVI1, the gene
encoding IRAG, which represents a target of cGMP-depen-
dent intracellular signaling, has also been associated with
platelet aggregation.111 The variants at all of these loci, i.e.,
NOS3, GUCY1A1, PDE5A, andMRVI1, are located in noncoding
regions. However, at least for NOS3, GUCY1A1, and PDE5A, an
association between genotype and gene expression has been
reported, i.e., the risk alleles of NOS3 and GUCY1A1 lead to
reduced gene expression.136–138 As a consequence cGMP
availability is reduced whereas the PDE5A risk allele is
associated with increased gene expression.139,140 While
the effect at NOS3 and GUCY1A1 loci has been reported to
be mediated via altered promoter activity,138,141 the link
between genotype and gene expression at the PDE5A locus is
not yet understood.

While the connection between variants involved in nitric
oxide signaling and platelet aggregation is obvious, it is still
not known how exactly this pathway is involved in plaque
formation and atherosclerosis in general. Hints that the
pathway might not be only important in atherothrombotic
but also preceding processes come from both experimental
studies rendering an involvement in the recruitment of
inflammatory cells to the vessel wall likely.134,135 Further-
more, there is genetic evidence that at least impaired sGC
activity might primarily affect atherosclerosis: in a family
with high prevalence of prematuremanifestation of CAD due
to a digenic mutation in GUCY1A1 and the gene encoding the
chaperone protein CCTeta, four of 11 family members carry-
ing at least one mutation underwent PCI or coronary artery
bypass surgery at a young agebut did not suffer fromMI.142 It
will thus be a challenge to identify the underlying cellular
and molecular mechanisms to evaluate the potential of
modifying this pathway in atherosclerosis. In this respect,
cumulative effects ofmultiple risk alleles which share effects
in the NO–cGMP-signaling pathway or respective coexpres-
sion networks may be informative.123–125,139,143

Despite these data suggesting a role for platelet phenotypes
and/or function in atherosclerosis, it has to bementioned that
monogenic diseases influencing platelet phenotypes have not
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been associated with reduced incidence of CVDs. In Glanz-
mann’s thrombasthenia in particular, a disease which is a
consequence of deficient αIIbβ3 integrin function in platelets,
cardiovascular events as arterial thrombosis or deep vein
thrombosis have been reported (for a review, see Nurden144).
Another example is the rare Bernard–Soulier syndrome that is
characterized by defects in the VWF–receptor complex (GPIb-
V-IX), where also MI has been reported.145 However, these
reports have to be takenwith caution as it is obvious that CVDs
and in particular CAD are influenced by several further risk
factors that cause the disease despite altered platelet function.

Pharmacological Approaches Targeting
Platelets in Atherosclerosis

Given the findings from basic research, inhibiting platelet
function seems like a plausible strategy to prevent atheroscle-
rotic plaque formation and progression. Current platelet treat-
ment targets include COX-1, which mediates AA metabolism,
P2Y12 adenosine diphosphate receptors, and the αIIbβ3 glyco-
protein receptor. Whereas the latter two are rather targeted/
utilized in specific situations, e.g., after coronary stenting or in
acute coronary syndromes, the role of aspirin in both primary
and secondary prevention of atherosclerotic disease as well as
in animal models has been extensively studied.

In secondary prevention, aspirin has been shown to signifi-
cantly reduce the incidence of vascular events in patientswith
acute stroke (absolute reduction: 0.9%) or MI (absolute reduc-
tion: 3.8%), previous stroke/transient ischemic attack (abso-
lute reduction: 3.6%) orMI (absolute reduction: 3.5%), but also
other high-risk situations (absolute reduction: 2.1%).146 These
benefits clearly outweigh the risk of bleeding, i.e., the number
needed to treat (NNT) to prevent a serious vascular event
ranges between 50 and 100, whereas the number needed to
harm ranges between 500 and 1,000 and 5,000 and 10,000 for
gastrointestinal bleeding events and hemorrhagic strokes,
respectively.147 The effect in secondary prevention is thought
to be a consequence of preventing atherothrombosis.148

In primary prevention of atherosclerotic plaques using
aspirin, the situation seems more complex. In animal models,
several studies have suggested that AA-related pathways and
their inhibition are associated with atherosclerotic plaque
formation and/or progression. In Ldlr�/� mice fed a Western-
type diet, indomethacin, a nonselective COX inhibitor reduced
atherosclerotic plaque formation and reduced expression of,
e.g., soluble intercellular adhesion molecule and monocyte
chemotactic protein-1.149 That this effect ismediated via COX-
1 is suggested by the fact that selective inhibition of COX-1 but
not COX-2 led to reduced atherosclerotic plaque formation in
ApoE�/� mice fed a high-cholesterol diet.150 An impact of
reduced thromboxane A2, the product of COX-1-mediated
AA metabolism, on atherosclerotic plaque formation has
also been shown by specifically inhibiting its receptor; in
this study, however, the unselective inhibition of COX-1 and
-2 by indomethacin did not lead to reduced atherosclerotic
plaque formation.151 Data from human studies do not ulti-
mately clarify the role of aspirin in primary prevention.
Although there are early data which suggested a benefit

from high-dose aspirin in atherosclerotic plaque progres-
sion,152 randomized clinical trials in healthy subjects153 and
meta-analyses154 have not been able to show a benefit from
aspirin intake that outweighs the increased risk in bleeding.
Two recent studies in diabetic or high-risk patients also failed
to prove a benefit from aspirin in primary prevention.155,156

There may be a subgroup of patients without previous cardio-
vascular events, but at a risk comparable to that of patients
in secondary prevention (predicted 10%mortality in 10 years)
or individuals with a particular genetic background. A very
interesting example is the reduction of LDL-cholesterol and
cardiovascular events using statins. Here, it has been shown
that a high genetic risk score (including 27 variants associated
with incident CHD) is associated with a stronger reduction of
cardiovascular risk by statin therapy comparedwith individu-
als with a low genetic risk score. In an analysis of the JUPITER
trial, the NNTs to prevent a cardiovascular event within
10 years were 66, 42, and 25 in the low, intermediate, and
highgenetic risk groups, respectively.99 It ispossible that in the
sense of precision medicine, individuals could also be identi-
fied to specifically benefit from antiplatelet treatment with an
unspecific drug such as aspirin if this is identified as the
disease-driving pathway.157 Also here, knowledge from ge-
nome-wide association studies might be useful. Whereas the
Womens’ and Physician’s Health Study did not show a clear
benefit fromaspirin inprimary prevention in the overall study
population,153 individuals carrying thehomozygousGUCY1A3
risk genotypehad a benefit from aspirin treatment with a 17%
risk reduction in women and a 51% reduction in men. In
women the NNT treated to avoid one major CVD event was
121.158Consideringhigher riskandstrongereffects inmen, the
NNT for GUCY1A3-guided prescription of aspirin could enter
the range of clear benefit unless otherwise contraindicated
(NNT � 100).159 Surprisingly, carriers of the nonrisk allele,
either heterozygous or homozygous, did not only lack benefit
from aspirin but rather experienced an increased risk com-
pared with placebo.158 This is a peculiar observation that
remains to be validated and explained. However, it has been
shown that the GUCY1A3 genotype is also associated with a
response to aspirin therapy with nonrisk allele carriers show-
ing lower on-aspirinplatelet reactivity.160One could speculate
that in nonrisk allele carriers aspirin shifts platelets toward an
increased risk of bleeding which is itself—directly and
indirectly via anemia—associated with cardiovascular
events.161–163 Of note, it also needs to be taken into account
that the effect of particular SNPsonCAD risk—and therebyalso
the presumed effect on the responsiveness to antiplatelet
therapies— is rather mediated by altered gene expression
than protein function. In contrast to CYP2C19 alleles leading
to slower metabolism of clopidogrel to active metabolites and
—as a consequence—to increased risk of ischemic events in
patients with acute coronary syndromes109,164,165, the
GUCY1A3 risk allele is associated with reduced expression of
the gene.138 The influence of reduced sGC protein levels on
response to aspirin treatment is, however, thought to be a
result of changes in intracellular equilibria: as such, AA influ-
ences platelet nitric oxide levels166 and GUCY1A3 risk allele
carriers presenting reduced sGC protein levels and activity
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might benefit from aspirin to outweigh this effect.160 While
this remains speculative, such complex interactions need to be
taken into account.

Conclusion and Outlook

In this brief review we have pointed out some recent
advances in the understanding how platelets influence ath-
erogenesis, but a comprehensive reporting on all concepts
was not within the scope. There is still a large gap to be closed
between the clear notion of platelets as inflammatory and
atherogenic cellular particles derived from experimental
data and prove for this concept in humans. This is based
primarily on the fact that platelets have a dual role as drivers
of atherosclerosis and executers of arterial thrombosis after
plaque rupture. Human data evaluating prognosis originate
to a large part from registries, trials, and observational
studies that mainly include symptomatic patients after
hospitalization and therefore the thrombotic role of platelets
in plaque erosion and rupture masks their impact on earlier
stages in plaque development. Still, some studies were able
to relate platelet phenotypes to CAD by recording PCI or
coronary artery bypass grafting in a nonacute setting. An
obstacle that needs to be overcome generally in evaluating
atherosclerosis, which is a slowly progressive disease, is the
possibility to assess plaque phenotypes in asymptomatic
humans over long time ranges. High-resolution imaging
such as optical coherence tomography and IVUS are able to
characterize coronary plaques, but are invasive techniques
precluding a screening of asymptomatic patients. Therefore,
a translational realization of all these interesting concepts
remains challenging.
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