Semin Thromb Hemost 2021; 47(01): 063-073
DOI: 10.1055/s-0040-1718888
Review Article

The Clotting Trigger Is an Important Determinant for the Coagulation Pathway In Vivo or In Vitro—Inference from Data Review

Shu He
1   Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
2   Division of Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
,
Honglie Cao
2   Division of Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
,
Charlotte Thålin
1   Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
,
Jan Svensson
1   Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
,
Margareta Blombäck
1   Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
2   Division of Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
,
Håkan Wallén
1   Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
› Author Affiliations
Funding This study is supported by the Clas Groschinsky fund.

Abstract

Blood coagulation comprises a series of enzymatic reactions leading to thrombin generation and fibrin formation. This process is commonly illustrated in a waterfall-like manner, referred to as the coagulation cascade. In vivo, this “cascade” is initiated through the tissue factor (TF) pathway, once subendothelial TF is exposed and bound to coagulation factor VII (FVII) in blood. In vitro, a diminutive concentration of recombinant TF (rTF) is used as a clotting trigger in various global hemostasis assays such as the calibrated automated thrombogram, methods that assess fibrin turbidity and fibrin viscoelasticity tests such as rotational thromboelastometry. These assays aim to mimic in vivo global coagulation, and are useful in assessing hyper-/hypocoagulable disorders or monitoring therapies with hemostatic agents. An excess of rTF, a sufficient amount of negatively charged surfaces, various concentrations of exogenous thrombin, recombinant activated FVII, or recombinant activated FIXa are also used to initiate activation of specific sub-processes of the coagulation cascade in vitro. These approaches offer important information on certain specific coagulation pathways, while alterations in pro-/anticoagulants not participating in these pathways remain undetectable by these methods. Reviewing available data, we sought to enhance our knowledge of how choice of clotting trigger affects the outcome of hemostasis assays, and address the call for further investigations on this topic.



Publication History

Article published online:
21 December 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Colman RW, Hirsh J, Marder VJ, Clowes AW. Plasma factors and inhibitors: procoagulants and fibrinolytic proteins. In: Colman RW, Hirsh J, Marder VJ, Clowes AW, George J. eds. Hemostasis and Thrombosis; Basic principles and Clinical Practice. Philadelphia, PA: Lippincott Williams & Wilkins; 2003: 17-20
  • 2 Butenas S, Mann KG. Blood coagulation. Biochemistry (Mosc) 2002; 67 (01) 3-12
  • 3 Smith SA, Travers RJ, Morrissey JH. How it all starts: Initiation of the clotting cascade. Crit Rev Biochem Mol Biol 2015; 50 (04) 326-336
  • 4 Wilcox JN, Smith KM, Schwartz SM, Gordon D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci U S A 1989; 86 (08) 2839-2843
  • 5 Morrissey JH, Macik BG, Neuenschwander PF, Comp PC. Quantitation of activated factor VII levels in plasma using a tissue factor mutant selectively deficient in promoting factor VII activation. Blood 1993; 81 (03) 734-744
  • 6 Hoffman M, Monroe DM, Oliver JA, Roberts HR. Factors IXa and Xa play distinct roles in tissue factor-dependent initiation of coagulation. Blood 1995; 86 (05) 1794-1801
  • 7 Lawson JH, Kalafatis M, Stram S, Mann KG. A model for the tissue factor pathway to thrombin. I. An empirical study. J Biol Chem 1994; 269 (37) 23357-23366
  • 8 Butenas S, van 't Veer C, Mann KG. Evaluation of the initiation phase of blood coagulation using ultrasensitive assays for serine proteases. J Biol Chem 1997; 272 (34) 21527-21533
  • 9 Mann KG. Biochemistry and physiology of blood coagulation. Thromb Haemost 1999; 82 (02) 165-174
  • 10 Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost 2005; 3 (08) 1894-1904
  • 11 Blombäck B. Travels with fibrinogen. J Thromb Haemost 2006; 4 (08) 1653-1660
  • 12 Blombäck B, Bark N. Fibrinopeptides and fibrin gel structure. Biophys Chem 2004; 112 (2–3): 147-151
  • 13 Lindhout T, Baruch D, Schoen P, Franssen J, Hemker HC. Thrombin generation and inactivation in the presence of antithrombin III and heparin. Biochemistry 1986; 25 (20) 5962-5969
  • 14 Olson ST, Björk I, Shore JD. Kinetic characterization of heparin-catalyzed and uncatalyzed inhibition of blood coagulation proteinases by antithrombin. Methods Enzymol 1993; 222: 525-559
  • 15 Wood JP, Ellery PE, Maroney SA, Mast AE. Biology of tissue factor pathway inhibitor. Blood 2014; 123 (19) 2934-2943
  • 16 Ellery PE, Adams MJ. Tissue factor pathway inhibitor: then and now. Semin Thromb Hemost 2014; 40 (08) 881-886
  • 17 Maroney SA, Mast AE. New insights into the biology of tissue factor pathway inhibitor. J Thromb Haemost 2015; 13 (Suppl. 01) S200-S207
  • 18 Reglińska-Matveyev N, Andersson HM, Rezende SM. et al. TFPI cofactor function of protein S: essential role of the protein S SHBG-like domain. Blood 2014; 123 (25) 3979-3987
  • 19 van Doorn P, Rosing J, Duckers C, Hackeng TM, Simioni P, Castoldi E. Factor V has anticoagulant activity in plasma in the presence of TFPIα: difference between FV1 and FV2. Thromb Haemost 2018; 118 (07) 1194-1202
  • 20 Walker FJ. Protein S and the regulation of activated protein C. Semin Thromb Hemost 1984; 10 (02) 131-138
  • 21 Esmon CT. The protein C anticoagulant pathway. Arterioscler Thromb 1992; 12 (02) 135-145
  • 22 Dahlbäck B. Protein S and C4b-binding protein: components involved in the regulation of the protein C anticoagulant system. Thromb Haemost 1991; 66 (01) 49-61
  • 23 Monroe DM, Hoffman M, Roberts HR. Platelets and thrombin generation. Arterioscler Thromb Vasc Biol 2002; 22 (09) 1381-1389
  • 24 Bevers EM, Rosing J, Zwaal RF. Membrane phospholipids are the major determinant of the binding site for factor X activating--and prothrombinase complexes at the surface of human platelets. Agents Actions Suppl 1986; 20: 69-75
  • 25 Tracy PB. Role of platelets and leukocytes in coagulation. In: Colman RW, Hirsh J, Marder VJ, Clowes AW, George J. eds. Hemostasis and Thrombosis; Basic principles and Clinical Practice. Philadelphia, PA: Lippincott Williams & Wilkins; 2003: 575-596
  • 26 Clarke BJ, Côté HC, Cool DE. et al. Mapping of a putative surface-binding site of human coagulation factor XII. J Biol Chem 1989; 264 (19) 11497-11502
  • 27 Citarella F, Ravon DM, Pascucci B, Felici A, Fantoni A, Hack CE. Structure/function analysis of human factor XII using recombinant deletion mutants. Evidence for an additional region involved in the binding to negatively charged surfaces. Eur J Biochem 1996; 238 (01) 240-249
  • 28 Renné T, Schmaier AH, Nickel KF, Blombäck M, Maas C. In vivo roles of factor XII. Blood 2012; 120 (22) 4296-4303
  • 29 Tillman B, Gailani D. Inhibition of factors XI and XII for prevention of thrombosis induced by artificial surfaces. Semin Thromb Hemost 2018; 44 (01) 60-69
  • 30 Maas C, Oschatz C, Renné T. The plasma contact system 2.0. Semin Thromb Hemost 2011; 37 (04) 375-381
  • 31 Müller F, Renné T. Novel roles for factor XII-driven plasma contact activation system. Curr Opin Hematol 2008; 15 (05) 516-521
  • 32 Naudin C, Burillo E, Blankenberg S, Butler L, Renné T. Factor XII contact activation. Semin Thromb Hemost 2017; 43 (08) 814-826
  • 33 Nickel KF, Renné T. Crosstalk of the plasma contact system with bacteria. Thromb Res 2012; 130 (Suppl. 01) S78-S83
  • 34 Brunnée T, Reddigari SR, Shibayama Y, Kaplan AP, Silverberg M. Mast cell derived heparin activates the contact system: a link to kinin generation in allergic reactions. Clin Exp Allergy 1997; 27 (06) 653-663
  • 35 De Maat S, Hofman ZLM, Maas C. Hereditary angioedema: the plasma contact system out of control. J Thromb Haemost 2018; 16 (09) 1674-1685
  • 36 Madsen DE, Hansen S, Gram J, Bygum A, Drouet C, Sidelmann JJ. Presence of C1-inhibitor polymers in a subset of patients suffering from hereditary angioedema. PLoS One 2014; 9 (11) e112051
  • 37 von dem Borne PA, Mosnier LO, Tans G, Meijers JC, Bouma BN. Factor XI activation by meizothrombin: stimulation by phospholipid vesicles containing both phosphatidylserine and phosphatidylethanolamine. Thromb Haemost 1997; 78 (02) 834-839
  • 38 Zakharova NV, Artemenko EO, Podoplelova NA. et al. Platelet surface-associated activation and secretion-mediated inhibition of coagulation factor XII. PLoS One 2015; 10 (02) e0116665
  • 39 Davie EW, Ratnoff OD. Waterfall sequence for intrinsic blood clotting. Science 1964; 145 (3638): 1310-1312
  • 40 MacFarlane RG. An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature 1964; 202: 498-499
  • 41 Winter WE, Flax SD, Harris NS. Coagulation testing in the core laboratory. Lab Med 2017; 48 (04) 295-313
  • 42 Hemker HC, Willems GM, Béguin S. A computer assisted method to obtain the prothrombin activation velocity in whole plasma independent of thrombin decay processes. Thromb Haemost 1986; 56 (01) 9-17
  • 43 Hemker HC, Giesen P, Al Dieri R. et al. Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol Haemost Thromb 2003; 33 (01) 4-15
  • 44 Al Dieri R, de Laat B, Hemker HC. Thrombin generation: what have we learned?. Blood Rev 2012; 26 (05) 197-203
  • 45 Castoldi E, Rosing J. Thrombin generation tests. Thromb Res 2011; 127 (Suppl. 03) S21-S25
  • 46 Regnault V, Béguin S, Lecompte T. Calibrated automated thrombin generation in frozen-thawed platelet-rich plasma to detect hypercoagulability. Pathophysiol Haemost Thromb 2003; 33 (01) 23-29
  • 47 Tripodi A. Thrombin generation assay and its application in the clinical laboratory. Clin Chem 2016; 62 (05) 699-707
  • 48 Wielders S, Mukherjee M, Michiels J. et al. The routine determination of the endogenous thrombin potential, first results in different forms of hyper- and hypocoagulability. Thromb Haemost 1997; 77 (04) 629-636
  • 49 Tripodi A, Primignani M, Lemma L, Chantarangkul V, Mannucci PM. Evidence that low protein C contributes to the procoagulant imbalance in cirrhosis. J Hepatol 2013; 59 (02) 265-270
  • 50 Tripodi A, Martinelli I, Chantarangkul V. et al. Thrombin generation and other coagulation parameters in a patient with homozygous congenital protein S deficiency on treatment with rivaroxaban. Int J Hematol 2016; 103 (02) 165-172
  • 51 Kyrle PA, Mannhalter C, Béguin S. et al. Clinical studies and thrombin generation in patients homozygous or heterozygous for the G20210A mutation in the prothrombin gene. Arterioscler Thromb Vasc Biol 1998; 18 (08) 1287-1291
  • 52 Rosing J, Tans G. Effects of oral contraceptives on hemostasis and thrombosis. Am J Obstet Gynecol 1999; 180 (6, Pt 2): S375-S382
  • 53 de Visser MC, van Hylckama Vlieg A, Tans G. et al. Determinants of the APTT- and ETP-based APC sensitivity tests. J Thromb Haemost 2005; 3 (07) 1488-1494
  • 54 Uitte de Willige S, de Visser MC, Houwing-Duistermaat JJ, Rosendaal FR, Vos HL, Bertina RM. Genetic variation in the fibrinogen gamma gene increases the risk for deep venous thrombosis by reducing plasma fibrinogen gamma' levels. Blood 2005; 106 (13) 4176-4183
  • 55 Rosing J, Hemker HC, Tans G. Molecular biology and pathophysiology of APC resistance: current insights and clinical implications. Semin Thromb Hemost 1998; 24 (04) 329-335
  • 56 Fagarasanu A, Alotaibi GS, Hrimiuc R, Lee AY, Wu C. Role of extended thromboprophylaxis after abdominal and pelvic surgery in cancer patients: a systematic review and meta-analysis. Ann Surg Oncol 2016; 23 (05) 1422-1430
  • 57 Gilmore R, Harmon S, Gannon C, Byrne M, O'Donnell JS, Jenkins PV. Thrombin generation in haemophilia A patients with mutations causing factor VIII assay discrepancy. Haemophilia 2010; 16 (04) 671-674
  • 58 Santagostino E, Mancuso ME, Tripodi A. et al. Severe hemophilia with mild bleeding phenotype: molecular characterization and global coagulation profile. J Thromb Haemost 2010; 8 (04) 737-743
  • 59 van Veen JJ, Gatt A, Bowyer AE, Cooper PC, Kitchen S, Makris M. Calibrated automated thrombin generation and modified thromboelastometry in haemophilia A. Thromb Res 2009; 123 (06) 895-901
  • 60 Hansson KM, Gustafsson D, Skärby T, Frison L, Berntorp E. Effects of recombinant human prothrombin on thrombin generation in plasma from patients with hemophilia A and B. J Thromb Haemost 2015; 13 (07) 1293-1300
  • 61 De Smedt E, Wagenvoord R, Coen Hemker H. The technique of measuring thrombin generation with fluorogenic substrates: 3. The effects of sample dilution. Thromb Haemost 2009; 101 (01) 165-170
  • 62 He S, Johnsson H, Zabczyk M, Hultenby K, Wallén H, Blombäck M. Fibrinogen depletion after plasma-dilution: impairment of proteolytic resistance and reversal via clotting factor concentrates. Thromb Haemost 2014; 111 (03) 417-428
  • 63 He S, Blombäck M, Boström F, Wallen H, Svensson J, Östlund A. An increased tendency in fibrinogen activity and its association with a hypo-fibrinolytic state in early stages after injury in patients without acute traumatic coagulopathy (ATC). J Thromb Thrombolysis 2018; 45 (04) 477-485
  • 64 He S, Zhu K, Skeppholm M. et al. A global assay of haemostasis which uses recombinant tissue factor and tissue-type plasminogen activator to measure the rate of fibrin formation and fibrin degradation in plasma. Thromb Haemost 2007; 98 (04) 871-882
  • 65 Leander K, Blombäck M, Wallén H, He S. Impaired fibrinolytic capacity and increased fibrin formation associate with myocardial infarction. Thromb Haemost 2012; 107 (06) 1092-1099
  • 66 Ortmann E, Rubino A, Altemimi B, Collier T, Besser MW, Klein AA. Validation of viscoelastic coagulation tests during cardiopulmonary bypass. J Thromb Haemost 2015; 13 (07) 1207-1216
  • 67 Nogami K. The utility of thromboelastography in inherited and acquired bleeding disorders. Br J Haematol 2016; 174 (04) 503-514
  • 68 Spahn DR, Spahn GH, Stein P. Indications and risks of fibrinogen in surgery and trauma. Semin Thromb Hemost 2016; 42 (02) 147-154
  • 69 Taune V, Wallén H, Ågren A. et al. Whole blood coagulation assays ROTEM and T-TAS to monitor dabigatran treatment. Thromb Res 2017; 153: 76-82
  • 70 Antovic JP, Onelöv L, Egberg N. Laboratory investigations. In: Antovic JP, Blombäck M. eds. Essential guide to Blood Coagulation. Hoboken, NJ: John Wiley & Sons Ltd; 2013: 11-38
  • 71 Erban SB, Kinman JL, Schwartz JS. Routine use of the prothrombin and partial thromboplastin times. JAMA 1989; 262 (17) 2428-2432
  • 72 Barcellona D, Fenu L, Marongiu F. Point-of-care testing INR: an overview. Clin Chem Lab Med 2017; 55 (06) 800-805
  • 73 Kalafatis M, Swords NA, Rand MD, Mann KG. Membrane-dependent reactions in blood coagulation: role of the vitamin K-dependent enzyme complexes. Biochim Biophys Acta 1994; 1227 (03) 113-129
  • 74 Young GA, Perry DJ. International Prophylaxis Study Group (IPSG). Laboratory assay measurement of modified clotting factor concentrates: a review of the literature and recommendations for practice. J Thromb Haemost 2019; 17 (04) 567-573
  • 75 Alving BM, Barr CF, Tang DB. Correlation between lupus anticoagulants and anticardiolipin antibodies in patients with prolonged activated partial thromboplastin times. Am J Med 1990; 88 (02) 112-116
  • 76 Marlar RA, Clement B, Gausman J. Activated partial thromboplastin time monitoring of unfractionated heparin therapy: issues and recommendations. Semin Thromb Hemost 2017; 43 (03) 253-260
  • 77 Blombäck M, He S, Bark N, Wallen HN, Elg M. Effects on fibrin network porosity of anticoagulants with different modes of action and reversal by activated coagulation factor concentrate. Br J Haematol 2011; 152 (06) 758-765
  • 78 He S, Blombäck M, Bark N, Johnsson H, Wallén NH. The direct thrombin inhibitors (argatroban, bivalirudin and lepirudin) and the indirect Xa-inhibitor (danaparoid) increase fibrin network porosity and thus facilitate fibrinolysis. Thromb Haemost 2010; 103 (05) 1076-1084
  • 79 Blombäck B, Carlsson K, Fatah K, Hessel B, Procyk R. Fibrin in human plasma: gel architectures governed by rate and nature of fibrinogen activation. Thromb Res 1994; 75 (05) 521-538
  • 80 Williams S, Fatah K, Ivert T, Blombäck M. The effect of acetylsalicylic acid on fibrin gel lysis by tissue plasminogen activator. Blood Coagul Fibrinolysis 1995; 6 (08) 718-725
  • 81 Ząbczyk M, Blombäck M, Majewski J. et al. Assays of fibrin network properties altered by VKAs in atrial fibrillation - importance of using an appropriate coagulation trigger. Thromb Haemost 2015; 113 (04) 851-861
  • 82 Antovic A, Perneby C, Ekman GJ. et al. Marked increase of fibrin gel permeability with very low dose ASA treatment. Thromb Res 2005; 116 (06) 509-517
  • 83 He S, Bark N, Wang H, Svensson J, Blombäck M. Effects of acetylsalicylic acid on increase of fibrin network porosity and the consequent upregulation of fibrinolysis. J Cardiovasc Pharmacol 2009; 53 (01) 24-29
  • 84 Svensson J, Bergman AC, Adamson U, Blombäck M, Wallén H, Jörneskog G. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: a mass spectrometric and isotope labeling study. Biochem Biophys Res Commun 2012; 421 (02) 335-342
  • 85 Collet JP, Park D, Lesty C. et al. Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: dynamic and structural approaches by confocal microscopy. Arterioscler Thromb Vasc Biol 2000; 20 (05) 1354-1361
  • 86 He S, Antovic A, Blombäck M. A simple and rapid laboratory method for determination of haemostasis potential in plasma. II. Modifications for use in routine laboratories and research work. Thromb Res 2001; 103 (05) 355-361
  • 87 Antovic A. The overall hemostasis potential: a laboratory tool for the investigation of global hemostasis. Semin Thromb Hemost 2010; 36 (07) 772-779
  • 88 Antovic A, Blombäck M, Sten-Linder M, Petrini P, Holmström M, He S. Identifying hypocoagulable states with a modified global assay of overall haemostasis potential in plasma. Blood Coagul Fibrinolysis 2005; 16 (08) 585-596
  • 89 Antovic JP, Mikovic D, Elezovic I. et al. Two global haemostatic assays as additional tools to monitor treatment in cases of haemophilia A. Thromb Haemost 2012; 108 (01) 21-31
  • 90 Chelle P, Montmartin A, Damien P. et al. Tissue factor pathway inhibitor is the main determinant of thrombin generation in haemophilic patients. Haemophilia 2019; 25 (02) 343-348
  • 91 Hedner U. Factor VIIa and its potential therapeutic use in bleeding-associated pathologies. Thromb Haemost 2008; 100 (04) 557-562
  • 92 Hedner U. Recombinant activated factor VII: 30 years of research and innovation. Blood Rev 2015; 29 (Suppl. 01) S4-S8
  • 93 Napolitano M, Di Minno MN, Batorova A. et al. Women with congenital factor VII deficiency: clinical phenotype and treatment options from two international studies. Haemophilia 2016; 22 (05) 752-759
  • 94 Poon MC, Demers C, Jobin F, Wu JW. Recombinant factor VIIa is effective for bleeding and surgery in patients with Glanzmann thrombasthenia. Blood 1999; 94 (11) 3951-3953
  • 95 Franchini M, Crestani S, Frattini F, Sissa C, Bonfanti C. Recombinant activated factor VII in clinical practice: a 2014 update. J Thromb Thrombolysis 2015; 39 (02) 235-240
  • 96 Johansson PI, Ostrowski SR. Evidence supporting the use of recombinant activated factor VII in congenital bleeding disorders. Drug Des Devel Ther 2010; 4: 107-116
  • 97 He S, Blombäck M, Jacobsson Ekman G, Hedner U. The role of recombinant factor VIIa (FVIIa) in fibrin structure in the absence of FVIII/FIX. J Thromb Haemost 2003; 1 (06) 1215-1219
  • 98 He S, Ekman GJ, Hedner U. The effect of platelets on fibrin gel structure formed in the presence of recombinant factor VIIa in hemophilia plasma and in plasma from a patient with Glanzmann thrombasthenia. J Thromb Haemost 2005; 3 (02) 272-279
  • 99 He S, Ezban M, Bark N, Persson E, Hedner U. Fibrin gel structure obtained with a FVIIa analogue with enhanced FX-activating potential in haemophilia. Thromb Haemost 2009; 102 (04) 790-792
  • 100 Monroe DM, Hoffman M, Oliver JA, Roberts HR. Platelet activity of high-dose factor VIIa is independent of tissue factor. Br J Haematol 1997; 99 (03) 542-547
  • 101 Kjalke M, Ezban M, Monroe DM, Hoffman M, Roberts HR, Hedner U. High-dose factor VIIa increases initial thrombin generation and mediates faster platelet activation in thrombocytopenia-like conditions in a cell-based model system. Br J Haematol 2001; 114 (01) 114-120
  • 102 Dargaud Y, Negrier C. Thrombin generation testing in haemophilia comprehensive care centres. Haemophilia 2010; 16 (02) 223-230
  • 103 Pavlova A, Oldenburg J. Defining severity of hemophilia: more than factor levels. Semin Thromb Hemost 2013; 39 (07) 702-710
  • 104 van den Berg HM, De Groot PH, Fischer K. Phenotypic heterogeneity in severe hemophilia. J Thromb Haemost 2007; 5 (Suppl. 01) 151-156
  • 105 Ninivaggi M, Dargaud Y, van Oerle R, de Laat B, Hemker HC, Lindhout T. Thrombin generation assay using factor IXa as a trigger to quantify accurately factor VIII levels in haemophilia A. J Thromb Haemost 2011; 9 (08) 1549-1555