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Introduction

Three decades after the ground breaking proposal of using
human umbilical cord blood (UCB) as a source of transplant-
able hematopoietic stem cells (HSCs),1 over 40,000 trans-
plants have been performed worldwide.2 The hematopoietic
reconstitution capacity of UCB resides in the high concentra-
tion of CD34þ cells, enriched for hematopoietic stem and
progenitors cells.3,4

Since 1993, public UCB banks have been established
worldwide. In Italy, UCB is stored, free of charge, when (1)
it is altruistically donated for HSC transplantation and (2) it is
for a family affected with, or at risk of, a disease that is
treatable with transplantation.5

UCBs thatdo notmeet the requirements for banking based
on the international standards became invaluable sources for
stem cell research.6 The studyof human hematopoiesis is one
of themajor applications as this humanmodel can overcome
drawbacks related (1) to the use of animals, which can be
poor predictors of human physiology,7 (2) to the high cost
and expertise necessary for generating the embryonic and
induced pluripotent cell lines,8–10 or (3) to the limited supply
of adult HSCs, which usually become available when dis-
carded after clinical procedures.11,12

Different protocols have been established for in vitro
megakaryocyte (Mk) differentiation from CD34þ cells. All
entail the usage of various concentrations of recombinant
human thrombopoietin (TPO) in combination with a variety

of hematopoietic cytokines but with contrasting results in
terms of Mk and proplatelet phenotypes.13–16

We report a retrospective analysis of our 15-year experi-
ence in UCB processing, with a focus on UCB features and
experimental procedures that are basic for a reproducible
culture of functional Mks without the need for serum
supplementation or coculture with feeder cells.

Results and Discussion

The UCB bank of the I.R.C.C.S. Policlinico San Matteo Foun-
dation of Pavia, in Italy, collects 4 UCB units/day. After donor
screening and testing for infectious agents, samples that
meet the international standards for banking (current-
ly> 1.6� 109 total nucleated cells [TNCs] or> 1.2� 109

TNCs and 2� 106 CD34þ cells) are stored, while the others
are forwarded to research laboratories. Among these, our
laboratory handled amedian of 16 unstored samples/month,
corresponding tomore than 1,500UCB units processed in the
past 15 years. All the samples were analyzed within a time-
lapse of 0 to 5 days from the date of collection, with most of
them (�80%) processed within 3 days (►Fig. 1A). A retro-
spective analysis of these samples showed a median volume
of 75mL/unit and a median cell count of 10� 103/μL white
blood cells, 3� 106/μL red blood cells, and 200� 103/μL
platelets (►Fig. 1B–E). The percentage of CD34þ cells was
approximately 0.2% (►Fig. 1B). Of these, we separated a
median of 0.85� 106 CD34þ cells/UCB (range:
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0.13–5.8� 106), by immunomagnetic sorting procedure. No
significant differences were observed in the number and
viability of CD34þ cells isolated from day 0 to 5 (►Fig. 1F, G),
thus supporting the notion that UCB CD34þ cell survival can
last for several days after collection.1

Uponharvesting, 1� 106CD34þ cells/mLwere cultured in a
serum-free medium in the presence of 10 ng/mL TPO and
10 ng/mL interleukin (IL)-11, which were renewed every
3 days over 2 weeks of differentiation. The median number
of viableMks quantified at the end of each culturewas 1� 106

(range: 0.1–7� 106). A significant correlation between the
input number of CD34þ cells and the corresponding number

of differentiated CD41þCD42bþ Mks was shown by linear
regression analysis (R2¼ 0.85, p< 0.0001; ►Fig. 2A), regard-
less of the timing of UCB processing after collection, thus
demonstrating that UCB CD34þ cells maintain full differentia-
tion capability over 5 days after sampling. These data highlight
the efficient rate of success of our culture conditions that
support the differentiation of one mature Mk per starting
CD34þ cell, rather than the proliferation of immature progen-
itors. Comparable results were obtained after thawing cryo-
preserved CD34þ cells, consistent with previous knowledge
about the efficient recovery of UCB HSCs after several years of
storage.17

Fig. 1 General characteristics of umbilical cord blood units. (A) Percentage of samples processed in the different day intervals. (B) Median values
and range of the volume and total cell count of umbilical cord blood (UCB) units (WBC, with blood cell; RBC, red blood cell; PLT, platelet). Based
on the concentration of (C) WBCs, (D) RBCs, and (E) PLTs, UCB unit distribute with a Gaussian-like distribution within the range of analysis. (F) Box
and whisker diagram of the number of CD34þ cells obtain from the UCB samples according to the day interval in which the sample was processed
(p¼NS). (G) Percentage of viable CD34þ cells obtained from the UCB samples according to the day interval in which the sample was processed.
Data are expressed as mean and standard deviation (SD) (p¼ NS).
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Fig. 2 Megakaryopoiesis from umbilical cord blood hematopoietic stem cells. (A) CD34þ cells were cultured in a serum-free medium in the presence of
interleukin (IL)-11 (10 ng/mL) and thrombopoietin (TPO) (10 ng/mL) for 2 weeks. Linear regression analysis of the number of CD34þ cells at the input and
CD41þCD42bþ at the output proved to be significant with an R2¼ 0.85. (B) The diameter of cells wasmeasured randomly throughout the culture, to assess
the rate of maturation. Data are expressed as mean� standard deviation (SD) (p< 0.05). (C) Megakaryocyte (Mk) ploidy was quantified at the end of the
culture byflow cytometry bygatingCD41þ events within the corresponding parameters of size and complexity tomatureMks. Data are expressed asmean
� SD. (D) Panningofcell surfacematuritymarkersonMkson the14thdayofculturewasperformedbyflowcytometry.Data areexpressedasmean� SD. (E)
Differentiationwas confirmedbyfluorescencemicroscopy (green:CD61; red: CD41;blue: nuclear stainHoechst 33258; scalebar: 30 µm). (F) Representative
lightmicroscopy images of proplatelet formation byMks in liquid culture (scale bar¼ 50 µm). (G) The percentage of proplatelet formingMkswas calculated
as the number of cells displaying long filamentous pseudopods with respect to the total number of round Mks per analyzed field. Histograms show the
percentage of proplatelet formation throughout the culture. Data are expressed as mean� SD (�p< 0.01). (H) Mks at day 13 of culture were plated on
fibronectin-coated coverslips. After 30minutes, 5 hours, or 16 hours of incubation adherent cells were fixed and stained for immunofluorescence analysis
withTRITC-phalloidin (red) andantibodyagainstα-tubulin (green).NucleiwerecounterstainedwithHoechst 33258 (blue). Scalebar¼ 30 µm. (I) CD34þ cells
were cultured in a serum-freemedium in thepresence of IL-11 (10 ng/mL) and increasing concentrations of TPO (10–50–100 ng/mL). Analysis of proplatelet
structure was performed after 2 weeks by immunofluorescence staining of the Mk-specific cytoskeleton component β1-tubulin (green¼ β1-tubulin;
blue¼ nuclei; scale bar¼ 25 µm). In all tested conditions, the representative pictures show similar elongation of proplatelet shafts with the presence of
bulbous tips, at the terminal ends of eachbranch, resemblingmature platelets. (L) The analysis of the percentage of proplatelet formingMks in the different
tested conditions show comparable Mk function. Data are expressed as mean� SD (p¼NS).
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During differentiation, a progressive increase in the per-
centage of cells with high diameter, ploidy, and expression of
lineage-specific markers was observed (►Fig. 2B–E). Elec-
tron microscopy analysis demonstrated the development of
the demarcation membrane system and the presence of
granules throughout the cytoplasm (►Supplementary

Fig. S1, available in the online version). At the end of the
culture> 95% of Mks were viable (►Supplementary Fig. S2,
available in the online version) and approximately 91� 5% of
cells expressed late-stage differentiation markers, such as
CD41 and CD42b. Of these, approximately 13� 3% Mks
elongated branched proplatelets in liquid culture (►Fig. 2F,

G). The process of proplatelet formation was spontaneously
initiated by Mks and burst between day 13 and 14 of
differentiation, independently of the presence of any cyto-
kines, including TPO. This was probably due to the regulation
of proplatelet formation through autocrine-paracrine signal-
ing,18,19 even though the exact mechanisms that drive
proplatelet formation are still unknown.20 Platelet-like
particles could be found in the culture medium
(►Supplementary Fig. S1, available in the online version).
Additionally, in our three-dimensional silk-based bone mar-
rowmodels we demonstrated that UCB-derived Mks release
platelets with the same morphological and functional fea-
tures of peripheral blood platelets.21–23

In vivo Mk function is supported by the interaction with
extracellular matrix components. Among these, fibronectin
is known to support proplatelet formation.13,24 Upon adhe-
sion on fibronectin, we showed that Mks activate different
cellular processes: (1) early passive adhesion; (2) stress fiber
formation andmicrotubule polymerizationwith proplatelet-
like pseudopod formation; and (3) proplatelet branching
(►Fig. 2H). Mk cultures with increasing concentrations of
TPO, from 10 to 100 ng/mL, did not prompt further Mk
differentiation or proplatelet formation (►Fig. 2I, L).

In summary, we developed a protocol to differentiateMks
from UCB CD34þ cells using minimal concentrations of TPO
and IL-11. The analysis of 1,500 UCB samples indicates that
our culture protocol is highly reproducible and represents a
gold standard for the study of humanmegakaryopoiesis. UCB
HSCs are cells of fetal/neonatal origin, and Mks derived from
these cells present distinct characteristics such as high
proliferation rate, low ploidy, and mature cytoplasm. For
this reason, low-ploidy neonatal Mks are more mature than
adult low-ploidy Mks.14 Despite these differences, our pro-
tocol has been designed to promote exclusively Mk matura-
tion resulting in almost one CD41þCD42bþ Mk per CD34þ

cell. The controlled proliferation in our cultures leads to the
production of a uniform population of CD41þCD42bþ Mks.
The consistency of this protocol makes these Mks a highly
reliable tool for different studies ranging from basic science
to disease modeling and drug testing.12,13,25
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