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The diffusion of electronic health records collecting large amount of clinical, monitor-
ing, and laboratory data produced by intensive care units (ICUs) is the natural terrain for
the application of artificial intelligence (Al). Al has a broad definition, encompassing
computer vision, natural language processing, and machine learning, with the latter
being more commonly employed in the ICUs. Machine learning may be divided in
supervised learning models (i.e., support vector machine [SVM] and random forest),
unsupervised models (i.e., neural networks [NN]), and reinforcement learning. Super-
vised models require labeled data that is data mapped by human judgment against
predefined categories. Unsupervised models, on the contrary, can be used to obtain
reliable predictions even without labeled data. Machine learning models have been
used in ICU to predict pathologies such as acute kidney injury, detect symptoms,
including delirium, and propose therapeutic actions (vasopressors and fluids in sepsis).
In the future, Al will be increasingly used in ICU, due to the increasing quality and
quantity of available data. Accordingly, the ICU team will benefit from models with high
accuracy that will be used for both research purposes and clinical practice. These
models will be also the foundation of future decision support system (DSS), which will
help the ICU team to visualize and analyze huge amounts of information. We plea for
the creation of a standardization of a core group of data between different electronic
health record systems, using a common dictionary for data labeling, which could
greatly simplify sharing and merging of data from different centers.

Evidence-based medicine is the foundation of modern medi-
cine. Since naval surgeon James Lind first published its
observations on scurvy treatment in sailors, evidence-based
medicine was progressively recognized as the landmark of
modern medicine.’

Randomized controlled trials reside on the highest step on
the podium of evidence, and their design takes often advan-
tage of multicentricity to increase external validity.? How-
ever, while large multicentric study remain the gold
standard, they are difficult and expensive to conduct in
terms of both time and resources. Accordingly, only between
10 and 20% of recommendations in modern medicine are
evidence based.> This aspect is particularly relevant in
intensive care medicine, where in recent years a large
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number of randomized controlled trials focusing on mortali-
ty and major clinical outcomes yielded negative results.* The
above-mentioned limitation is related with the character-
istics of the population of critically ill patients, which have
wide variability in comorbidities, age, and baseline mortality
according to different conditions at intensive care unit (ICU)
admission.

The high frequency of negative trial in critical care may
thus be related to heterogeneity and confounding effects.
Accordingly, ICU patients will present great variability in the
benefits from a specific therapy, called heterogeneity of
treatment effect, which may even result in apparent para-
doxes, such as negative trials of therapies, that results
beneficial in high-risk subgroups.”
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As reported in the previous chapter, the ICU is the most
suitable ward, among all the hospital wards to begin the
transition to big data. This is due to the high number of
monitoring systems, collecting continuously and with a high
granularity (i.e., collecting data every minute or even
every second) respiratory, hemodynamic, neurological, and
clinical data.

Big data may help to overcome some of the limitations of
the evidence-based medicine applied to intensive care med-
icine. Randomized controlled trials are generally employed
to control the risk of bias and confounder, randomly distrib-
uting them among cases and controls. While this strategy
may work well for bias introduced by observer (selection
bias, reporting bias, and observer bias), consequently reduc-
ing the risk of type-1 error (false-positive error), this same
approach may actually increase the risk of type-2 error
(false-negative error), hampering the identification of a
positive treatment effect in a specific subpopulation. Risk
of type-2 error is further increased by the unfeasibility and
costs which would be needed to conduct randomized trials
in every possible subpopulation.

Conversely, with large amount of data effortlessly collect-
ed by electronic health record (EHR), which contains the
same resolution used by caring physicians to take decisions,
it becomes extremely easier to conduct analysis of therapeu-
tic interventions in smaller populations.

On the drawback, the level of resolution of these data are
often so high that classic statistical explorations and analyses
may be too difficult and time consuming to be performed, at
least not in real time or within a short-time window. In this
respect, artificial intelligence (Al) may be more than helpful,
with the diffusion of powerful machine learning algorithms
designed to automate and simplify data analysis.

“Can a Machine Think?”: History and
Definition of Artificial Intelligence

“Can a machine think?” was the interrogative proposed by
Alan Turing in 1950. Turing proposed what is now known has
the Turing test, to assess whether Al was evolved enough to
be indistinguishable from a human being. In the test, a
computer and a human being are placed in two closed rooms,
and an observer outside should guess which of the two is the
computer and which is the human. If the human fails its
guess, the computer has passed the Turing test. The academic
debate on the concept of Al flourished in the following
debate, with the term “artificial intelligence” being used
the first time at the Dartmouth Conference, held in 1956
in New Hampshire. However, despite decades of discussion
and argumentation, no real consensus on the definition of Al
exits. The term generally refers to the ability of a machine to
show “cognitive” capabilities, including the ability to learn,
and to perform inference and deduction.

Al applied to the medical field may refer to machine
learning to the ability to understand and produce natural
language (also known as natural language processing [NLP])
or the capability to visualize and recognize objects (comput-
er vision).
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Fig. 1 The different facets of artificial intelligence.

Some of the key aspects encompassed by Al are reported
in =Fig. 1.

How Does a Machine Learn?: The Scope of
Machine Learning

Machine learning techniques are algorithms designed to
analyze very large datasets. The concept behind machine
learning is to allow computers to learn without the need to
program specific tasks that is without a human to under-
stand, supervise, and interpret all steps of data analysis.
Machine learning models are trained on datasets that
contain huge amounts of raw data and are based on numbers,
or images, or texts. The advantage of machine learning
models compared with standard analysis model is that the
best algorithm is automatically tuned by the machine learn-
ing process, without being coded step by step by human
interaction. In the simplest machine learning process, the
following three key aspects are cooperating to yield a results:
datasets (which contains the raw data), algorithms (which
interpret the data), and selected features (the variables
selected in the dataset to be used in the analysis; =Fig. 2).
Features are used to define key aspects of the process in
supervised learning and need human judgment and interac-
tion. Unsupervised models, conversely, are built to interpret
information without previous selection of features.

Fig. 2 The three aspects of machine learning.
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Clinical Applications of Artificial Intelligence

In a study by De Fauw et al, Al algorithms employed convo-
luted neural networks (NN; a type of unsupervised machine
learning which is specifically useful for evaluation of images)
to analyze retinal pattern to detect retinal disease. This
process is particularly complex, as it faces several difficulties
such as variations in quality of image, variation in the
technical process of acquisition, and variations in patient
characteristic. To overcome these challenges, the authors
used a two-step approach which is paradigmatic in computer
vision, by means of a segmentation network, the model
trained to map each voxel (a single data point of a regularly
spaced three-dimensional grid) into one of the possible
tissue types, according to predefined categories (by anatomy
and pathology classification and including image artifacts).
Subsequently, another neural network was trained to learn
to analyze the segmentation map to provide diagnosis and
referral decision. The two NNs were able to achieve very good
performance in detection of retinal disease.®

NLP is still at the beginning of its development but its
potential is huge. NLP is designed to allow the extraction of
concepts from the natural language used by doctors in
clinical charts to communicate with colleagues and health
care professional.” NLP is still limited by different levels of
development according to different languages and countries,
but in the near future, it will provide fundamental under-
standing in the richest resource of medical knowledge such
as the medical narrative included in clinical charts.®

Critical illness
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In intensive care medicine, the most used Al algorithms
are those based on machine learning, as critical care is a good
source for large dataset of numeric data derived by complex
continuous monitoring and by continuous therapies.

~Fig. 3 illustrates the complexity of data generated by a
single ICU admission, starting from baseline patient data, to
the level of organ failure at the debut of critical illness, and
encompassing all therapies and biological and clinical data
derived from the entire ICU admission.

A machine learning strategy for prognostication consid-
ering the entire ICU admission could have clear advantage
over commonly employed scores such as SOFA (Sequential
Organ Failure Assessment) and APACHE-II (Acute Physiology
And Chronic Health Evaluation II), as it would reach a higher
performance and represent a step forward toward personal-
ized-medicine compared with standard scores.”'°

The most common machine learning models which have
been used in critical care are described in the next sections

Classification versus Regression Models

In general terms, classification models are generally used to
automatically predict whether an object is part of a category or
another. The aim of the model is thus to define a mapping
function able to assign a patient to a discrete output variable (e.
g., a “labelled” feature), using data from some input variables.

Conversely, regression models are generally used to pre-
dict a quantity, that is, how much the blood pressure while
rise or fall according after the administration of a medication.

Outcome

&

APACHER Vasopressors

Fig. 3 The complexity and variability data generated by single ICU admissions. COPD, chronic obstructive pulmonary disease; ICU, intensive

care unit.
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A pattern easily predicted by linear regression
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A classification not predicted by logistic regression

.
P .
ke . ®
- L
L . ]
- -
.e - L -w T
"o - LR &
.
L " & ]
LI ™ . L *
.
-* ‘..‘- = .
W, . e N <
'. F . » .
Y - . = g .
. " e " - o.‘":
L]

. . _— . "a
> - * s = h: ¥
. <) _: "

LI . T A T . L
. . s 2
«*y feor L .
.
. : “* " o .’ -
o..- . : - . .
: - 0“- ¢ oo
[
s, " » L ']
) q.i &
. oy e ol
L] . ‘ a " F 1 L] .
. . L ] " wyg ¥ L
- a® . @ ®
L 2 - " s .
w - - .
. - . LY
® :o ..'4.-... . "
w & 2
. ® 8
]
"
" - L s %
']
L] . o F 1
L4 & L] .'.'
.
. . =
- s
®
" .
] 1 o

Fig.4 (A) Asimple pattern predicted by a linear model. (B) A clear pattern which could have a very poor performance using logistic regression.

The most known models for classification and regression
are linear and logistic regression. Linear regression uses a
linear combination of features to model an outcome
(=Fig. 4A), and is represented by the following function:

¥ =wix1 + waxa + wax, + b,

where y is the outcome, w,, is the slope of each x,, feature, and
b is the y intercept.

Logistic regression, despite its name, is a classification
learning algorithm. It uses a sigmoid function to assign an
event a probability, which is by definition restricted between
0 and 1. It is one of the most popular classification algorithm
used in medicine. However, in clinical medicine, we are
rarely so lucky to have a simple pattern predicted by linear
or logistic regression (=Supplementary Material, available
in the online version). With an increasing complexity of
scenarios related with increasing amount of data, and with
better representation of reality, more complex models are
needed to be able to interpret the data (~Fig. 4B).

Machine Learning Algorithms: Supervised
Learning Models and Labeled Data

Supervised learning algorithms are commonly employed in
intensive care medicine. The term supervised refers to the
process of learning from labeled data. With training, the
algorithm will search for patterns which best correlate with
outcome.

Labeling is the process that assign a data to a category or
label it. In medicine, this process normally involves a human
who maps clinical data against a known definition. The
definition may identify a syndrome, such as sepsis or acute
respiratory distress syndrome (ARDS), but also quantify a
condition, such as severity of chronic obstructive pulmonary
disease (COPD) or level of frailty.

Labeling is essential in supervised learning and is also the
base for clinical scales used in medicine, where we use to
define categories that are easily understandable by physi-
cians and convey information on diagnosis or prognosis.

While being largely used for research purpose, clinical
labeling is generally not integrated with EHR system. Even
when health care professional categorizes a patient within a
certain scale, the results are often reported in natural
language within the clinical diary, thus losing the utility of
the label beyond the clinical context.

Therefore, one of the most common strategies to derive
clinical labels is to use diagnostic and procedure reimburse-
ment codes. In several countries, the hospital admission
process completes with the mapping of International Classifi-
cation of Diseases, ninth revision (ICD-9) codes for reimburse-
ment purposes.'! However, limitations of ICD-9 coding are
well known. In a large study including 161,529 patients, ICD-9
codes had poor accuracy in reporting pneumonia etiology,
with good specificity but low sensitivity, (as low as 14% for
some type of bacterial pneumonia).'?'3 Nonetheless, as data
labeling representa burden in terms of time and resources, as it
implies the need of one or more experienced person, ICD-9
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Is this patient
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a— T
Are C-reactive protein No
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Fig. 5 A simple decision tree on sepsis. WBC, white blood cell.

codes are frequently used even in the most famous critical care
databases, the Medical Information Mart for Intensive Care,
version III (MIMIC-1II) database.'

Among supervised models, we report here a brief descrip-
tion of decision trees, SVM, and random forest.

Decision Trees

A decision tree is a flowchart-like model which produces an
outcome after processing input information through several
decisional nodes which correspond to each tree node. The
decision tree is depicted upside down with the root at the top
(=Fig. 5). The first node is called root, while the end of the
branches is called leaf. The advantage of decision tree is a
clear representation of feature importance and relations.

Support Vector Machines

The goal of SVM model is to define a hyperplane in an N-
dimensional space, which is able to classify data points when
aline or a plane in a two- or three-dimensional space would
not be useful. - Fig. 6 reports a visual simplification of a SVM
that is readable, as hyperplanes of n-dimensions are very
difficult to imagine for human beings. Support vectors are

X

Fig. 6 Example of a support vector machine, with hyperplane and
support vectors (dotted lines).

the data which influence orientation and position of the
hyperplane which separate the data for classification. In
SVM, by means of a function which transform the original
space in a space of higher dimensionality, we may be able to
classify every points.

Random Forest

Random forests are based on a large number of individual
decision trees that work in parallel. Each tree is different
from the others, and classifies the outcome independently,
and through a sort of democratic process the classification
with the higher number of votes produces the final output.
The idea behind the model is that the overall group of
uncorrelated trees will produce better performance than
any of the single tree (~Fig. 7).

Deep Learning: Neural Network

To improve processing of complex information, deep learning
models try to replicate the structure of a human brain. They
use nonlinear transformations to increase the level of abstrac-
tion, and differently from supervised models, deep models
may be used without previous labeling or feature selection.
In its most simple form, a neural network is based on
multilayer perceptrons that are a series of several layers of
neurons. Every neuron holds a number from 0 to 1, and when
the number inside the neuron is above a certain threshold,
called activation number, the neuron will activate. Activation
of some group of neurons from one neural layer bring activa-
tion to other neurons in the next layer, in a way that is similar
to biological neurons. The last layer is the output layer, where
the group of neurons activated more frequently will prevail ina
single output, giving the final interpretation of the model. NN
can start from only a few layers, and reach hundreds of layers of
neurons. As the neural network increases in complexity and
number of layers, the number of data to correctly train the
algorithm increases parallelly. Deep learning has been used in
image recognition and in computer vision, as well as in NLP.

Reinforcement Learning

Reinforcement learning is a third option in machine learn-
ing that is particularly useful in sequences of decision.
When the algorithm is trained, each choice of the algorithm
leads to a reward or penalty, in a trial-and-error game,
which enables to solve a complex problem in an uncertain
environment. The algorithm tries to maximize the reward
and reduce the penalty. The programmer sets the rewards
and penalties, but produces no suggestion on how to solve
the problem.

Examples of Machine Learning in Critical Care

The increasing adoption of EHR in the ICU is prompting the
diffusion of data science and machine learning in the critical
care environment. Hemodynamic data from monitors, infu-
sion data from infusion pumps, respiratory data from ven-
tilators, are generating large amount of data which can be
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Fig. 7 An example random forest.

compared with other source of big data such as the omics
(i.e., genomics or proteomics).

Komorowski et al developed a computational model
through the use of reinforcement learning to dynamically
suggest optimal treatments for adult patients in ICUs."

The model was built and validated on the two largest
datasets available in ICU: the (MIMIC-IIT) which was used as
training set to develop the model, and the eICU Research
Institute Database (eRI).'* The model demonstrated that an
Al clinician performed bettered, compared with clinicians, in
selecting intravenous fluids and vasopressors. On average,
the Al clinician recommended lower doses of fluids and
higher doses of vasopressors compared with actual treat-
ments. Moreover, patients receiving the dose more close to
those suggested by Al clinician had the lowest mortality.'”

In a study by Davoudi et al, pervasive monitoring and
machine learning were used on 22 patients admitted to an
ICU to continuously assess delirium and agitation.'® Patient
were labeled according to CAM (confusion assessment
method)-ICU scale. Camera and accelerometers were
employed to record facial expression and movements. Three
accelerometers were placed on patient wrist, ankle, and
arm to identify posture. A pretrained neural network was
used for facial recognition and detection of expression
through single elements.!” This very nice study is one of
the first study to assess patient emotions continuously, in
patients with and without delirium. Moreover, this system
offered the possibility to continuously analyze patient
movements, circadian rhythm disruption, in an objective
and reproducible way.

Seminars in Respiratory and Critical Care Medicine Vol. 42 No. 1/2021 © 2020. Thieme.
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The Future

With an explosion in quantity and resolution of data from the
critical care environment, machine learning models will
become popular in intensive care research, and will provide
deeper understanding of the complexity behind ICU care.

Beside clinical research purposes, the power of Al in
intensive care may be unleashed by two further steps:
clinical DSS systems and precision medicine.

A step toward precision medicine will be taken when data
science in intensive care will allow to study subgroups of
patients so homogeneous and distinct from other groups
that they will represent the “prototype” of a single patient,
having exactly the same age, same previous pathologies,
same home medications, and same ICU admission reason
and organ failure.'®

DSS integrated in the EHR will be able to inform instantly
the critical care team of variation in patient conditions,
consequent changes in prognosis, and suggest further diag-
nostic or therapeutic actions.!? Limitation of current exam-
ple of DSS is that they are based on a low number of features
and lack external validity, all factors that reduce their
performance. In the future, DSS derived by machine learning
algorithms built on thousands of features may constitute a
major clinical advantage. For example, a DSS may use labo-
ratory, clinical, hemodynamic waveform data, and microbi-
ological data to inform the caring team of a possible new
episode of sepsis in an ICU patient, hours before its clinical
manifestation, suggesting further diagnostic and therapeutic
steps, according to the analysis of microbiological data taken
from every patient admitted in that ward during the previ-
ous 10 years.

This system will not replace the critical care team, physician
and nurses will be always in charge of the patient, taking all
decision, but will benefit from an increased level of informa-
tion which could not be available using other methods.

Limitations of Artificial Intelligence

Despite its major advantages, the Al clinicians bear some
important limitations. It would be exceedingly difficult for an
algorithm to include, in its decision process, the large spec-
trum of opinions and believes which influence personal
choices of every single patients. Cultural difference and
diversity in perception of intensive care interventions are
a fundamental part of the care of critically ill patients.2%

Moreover, machine learning models may find spurious
association and erroneously interpret them as real relation-
ships between events. To avoid these kinds of misinterpreta-
tion, humans should always oversee the outcomes of
machine learning process and verify their results.

A third limitation is related with source data, every
machine learning model can be as good as the data underly-
ing it. As above mentioned, Al models need very large
amount of high-quality and high-resolution data; however,
most of the clinical knowledge on patient care is transmitted
by natural language within clinical charts or during oral
transmissions between colleagues, and these are still pre-

cluded to Al algorithms. Differences between software sys-
tems, local protocols, and medical practice between different
countries, different centers, or even within the same hospital
may further impair the performance of Al models

All these aspects are limitations of Al. Eventually, despite
its potency in classification of disease, stratification of
patients, identification of the best treatment toward preci-
sion medicine, the Al clinician would never be able to sit with
a patient, take his hand, guess the best words needed to
communicate his/her medical condition, and discuss with
her or with him the best treatment options.

A Plea for Standardized Data Labeling and
Digital Data Sharing

The potential benefit of machine learning in clinical practice
are directly related with the amount, quality, and resolution
of the data.

Nowadays, even with the increasing diffusion of EHR sys-
tem in the ICUs, the background structure of the data are so
different between different ICUs, to be very difficult to merge,
even when different ICUs are using the same software and
often even when considering ICUs from the same hospital.

Moreover, barriers related with country-specific privacy
regulation, ethical committee regulations are legislative
differences may further impair sharing and merging of data.

This is a lost opportunity, for patients, clinical researchers,
doctors, and nurses from the entire intensive care community.

Conclusion

We advocate the diffusion of a common structure for ICU EHR
databases, based on a common nucleus of core data, and a
common dictionary for labeling of core features, which may
be in future used to merge large amount of data between
different centers. Core data and labeling could be chosen
through a consensus process.

We also propose to stakeholders and legislators to take
further steps to simplify the diffusion of anonymized data
between different centers in different countries and allowing
the creation of large datasets, which could grant improve-
ments in clinical care while protecting patients’ rights.
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