Z. LIU*, A. KLAPARS, B. SIMMONS, A. BELLOMO, A. KALININ, M. WEISEL, J. HILL, S. M. SILVERMAN* (MERCK & CO., INC., RAHWAY, USA)

Development and Implementation of an Aluminum-Promoted Phosphorylation in the Uprifosbuvir Manufacturing Route *Org. Process Res. Dev.* **2021**, *25*, 661–667, DOI: 10.1021/acs.oprd.0c00487.

A Refined ProTide Route to Uprifosbuvir

Significance: The hepatitis C virus (HCV) has infected 170 million people worldwide. Over 70 million have succumbed to chronic hepatitis C that can lead to a spectrum of conditions affecting the liver, ranging from inflammation to cirrhosis and cancer. Uprifosbuvir (MK-3682) is an NS5B RNA polymerase inhibitor that was of interest as a combination therapy for the treatment of HCV infections. It is a nucleoside-based prodrug that utilizes the 5'-aryloxyphosphoramidate or ProTide moiety **A** to enhance cellular permeability and phosphorylation rates. Over 20 forms of uprifosbuvir have been identified, some showing dramatically reduced bioavailability.

Comment: A major improvement in the multikilogram-scale synthesis of C entailed the reaction of phosphoramidate A (1.0 equiv) with nucleoside B (1.2 equiv) promoted by dimethylaluminum chloride (0.5 equiv) and 2,6-lutidine (1.25 equiv) in THF at 35 °C. Under these precisely defined conditions, uprifosbuvir was isolated in 81% yield with >100:1 diastereoselectivity at the phosphorus stereocenter and >100:1 selectivity for the 5'-mono phosphorylation product **C** over the undesired bisphosphorylation side products D. A small increase in the reaction temperature led to a significant increase in the formation of cyclic phosphoramidate impurity E. Techniques and apparatus are described to safely handle neat pyrophoric dimethylaluminum chloride.

Category

Synthesis of Natural Products and Potential Drugs

Key words

uprifosbuvir hepatitis C MK-3682 phosphorylation prodrug

nucleotides

SYNFACTS Contributors: Philip Kocienski Synfacts 2021, 17(06), 0599 Published online: 18.05.2021 **DOI:** 10.1055/s-0040-1719729; **Reg-No.:** K03121SF