Synthesis 2022; 54(01): 33-48
DOI: 10.1055/s-0040-1719826
short review

Recent Advances in Transition-Metal-Catalyzed C–H Addition to Nitriles

Shu-Qiang Cui
a   Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. of China
,
Wei-Wei Liao
a   Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. of China
b   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (21772063).


Abstract

Transition-metal-catalyzed C–H bond addition to nitriles has emerged as a powerful synthetic approach for the construction of C–C bonds in organic synthesis. Due to the merits of atom- and step-economy, as well the easy availability of the starting materials, these transformations not only deliver acyclic aryl ketone products with nitriles­ as C-building blocks, but can also be utilized for the highly efficient­ assembly of azaheterocyclic skeletons using nitriles as C–N building blocks. This short review summarizes recent progress on transition-metal-catalyzed C–C bond-forming reactions based on C(sp2)–H and C(sp3)–H additions to nitriles.

1 Introduction

2 Palladium-Catalyzed C–H Addition to Nitriles

2.1 Palladium-Catalyzed C–H Addition to Nitriles for the Preparation of Ketone (Imine) Products

2.2 Palladium-Catalyzed C–H Addition to Nitriles for the Preparation of Azaheterocycles

2.3 Palladium-Catalyzed C–H Addition to Nitriles/1,2-Rearangement

3 Other Transition-Metal-Catalyzed C–H Additions to Nitriles

4 Summary and Outlook



Publication History

Received: 29 June 2021

Accepted after revision: 26 July 2021

Article published online:
19 August 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • Transition-metal-catalyzed nucleophilic addition of organometallic reagents to unsaturated substrates:
    • 1a Fairlamb IJ. S. Annu. Rep. Prog. Chem. Sect. B: Org. Chem. 2003; 99: 104
    • 1b Beller M, Seayad J, Tillack A, Jiao H. Angew. Chem. Int. Ed. 2004; 43: 3368
    • 1c Yamamoto Y, Radhakrishnan U. Chem. Soc. Rev. 1999; 28: 199
    • 1d Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M. Chem. Rev. 2008; 108: 3795
    • 1e Nájera C, Beletskaya IP, Yus M. Chem. Rev. 2019; 48: 4515

      For C=C, C≡C and C–X bonds, see:
    • 2a Yang L, Huang H. Chem. Rev. 2015; 115: 3468
    • 2b Yan G, Wu X, Yang M. Org. Biomol. Chem. 2013; 11: 5558
    • 2c Hummel JR, Boerth JA, Ellman JA. Chem. Rev. 2017; 117: 9163
    • 2d Zhang X.-S, Chen K, Shi Z.-J. Chem. Sci. 2014; 5: 2146

      Selected reviews:
    • 3a Jia C, Kitamura T, Fujiwara Y. Acc. Chem. Res. 2001; 34: 633
    • 3b Ferreira EM, Zhang H, Stoltz BM. Tetrahedron 2008; 64: 5987
    • 3c Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 3d Colby DA, Tsai AS, Bergman RG, Ellman JA. Acc. Chem. Res. 2012; 45: 814
    • 3e Ackermann L. Acc. Chem. Res. 2014; 47: 281
    • 3f Zhu W.-H, Gunnoe TB. J. Am. Chem. Soc. 2021; 143: 6746
    • 3g Nishimura T. Chem. Rec. 2021; 21: 1
    • 4a Fatiadi AJ. Preparation and Synthetic Applications of Cyano Compounds. In Triple-Bonded Functional Groups. Patai S, Rappaport Z. John Wiley & Sons; New York: 1983: 1057
    • 4b In Comprehensive Organic Transformations . Larock RC. Wiley-VCH; New York: 1989: 686
    • 4c Murahashi S.-I, Kanemasa S, Subramanian LR, Schmidt A, North M, Podlech J, Collier SJ, Langer P, Wang W.-T, Lin L.-L. In Science of Synthesis: Three Carbon–Heteroatom Bonds: Nitriles, Isocyanides, and Derivatives, Vol. 19. Murahashi S.-I. Georg Thieme Verlag; Stuttgart: 2004
  • 5 Review: Hsieh J.-C, Su H.-L. Synthesis 2020; 52: 819

    • Recent examples of Ar–B:
    • 6a Zhao B, Lu X. Tetrahedron Lett. 2006; 47: 6765
    • 6b Sävmarker J, Rydfjord J, Gising J, Odell LR, Larhed M. Org. Lett. 2012; 14: 2394
    • 6c Yu A.-J, Li J.-Y, Cui M.-J, Wu Y.-J. Synlett 2007; 19: 3063
    • 6d Qi L, Hu K, Yu S, Zhu J, Cheng T, Wang X, Chen J, Wu H. Org. Lett. 2017; 19: 218
    • 6e Hu K, Zhen Q, Gong J, Cheng T, Qi L, Shao Y, Chen J. Org. Lett. 2018; 20: 3083
    • 6f Yu H, Xiao L, Yang X, Shao L. Chem. Commun. 2017; 53: 9745
    • 6g Wong Y.-C, Parthasarathy K, Cheng C.-H. Org. Lett. 2010; 12: 1736

      Recent examples of Ar–I:
    • 7a Larock RC, Tian Q.-P, Pletnev AA. J. Am. Chem. Soc. 1999; 121: 3238
    • 7b Hsieh J.-C, Chen Y.-C, Cheng A.-Y, Tseng H.-C. Org. Lett. 2012; 14: 1282
    • 7c Jaiswal Y, Kumar Y, Pal J, Subramanian R, Kumar A. Chem. Commun. 2018; 54: 7207

      Recent examples of Ar–SO2X:
    • 8a Liu J, Zhou X, Rao H, Xiao F, Li C.-J, Deng G.-J. Chem. Eur. J. 2011; 17: 7996
    • 8b Behrends M, Sävmarker J, Sjöberg PJ. R, Larhed M. ACS. Catal. 2011; 1: 1455
    • 8c Miao T, Wang GW. Chem. Commun. 2011; 47: 9501

      Recent examples involving Ar–COOH:
    • 9a Lindh J, Sjöberg PJ. R, Larhed M. Angew. Chem. Int. Ed. 2010; 49: 7733
    • 9b Rydfjord J, Svensson F, Trejos A, Sjöberg PJ. R, Sköld C, Sävmarker J, Odell LR, Larhed M. Chem. Eur. J. 2013; 19: 13803
  • 10 Zhou C, Larock RC. J. Am. Chem. Soc. 2004; 126: 2302
  • 11 Jia C, Piao D, Oyamada J, Lu W, Kitamura T, Fujiwara Y. Science 2000; 287: 1992
  • 12 Zhou C, Larock RC. J. Org. Chem. 2006; 71: 3551
  • 13 Sato Y, Yato M, Ohwada T, Saito S, Shudo K. J. Am. Chem. Soc. 1995; 117: 3037
  • 14 Wan J.-C, Huang J.-M, Jhan Y.-H, Hsieh J.-C. Org. Lett. 2013; 15: 2742
  • 15 Jiang T.-S, Gan B, Wang X, Zhang X. Tetrahedron Lett. 2017; 58: 4197
  • 16 Ma Y, You J, Song F. Chem. Eur. J. 2013; 19: 1189
  • 17 Jiang T.-S, Wang G.-W. Org. Lett. 2013; 15: 788
  • 18 Jiang T.-S, Wang G.-W. Adv. Synth. Catal. 2014; 356: 369
  • 19 Jafarpour F, Hazrati H, Darvishmolla M. Adv. Synth. Catal. 2014; 356: 3784
  • 20 Das T, Chakraborty A, Sarkar A. Tetrahedron Lett. 2014; 55: 7198
  • 21 Rydfjord J, Skillinghaug B, Brandt P, Odell LR, Larhed M. Org. Lett. 2017; 19: 4066
  • 22 Wang T.-T, Zhao L, Zhang Y.-J, Liao W.-W. Org. Lett. 2016; 18: 5002

    • Selected reviews:
    • 23a North M. Tetrahedron: Asymmetry 2003; 14: 147
    • 23b Brunel JM, Holmes IP. Angew. Chem. Int. Ed. 2004; 43: 2752
    • 23c North M, Usanov DL, Young C. Chem. Rev. 2008; 108: 5146
  • 24 Zhao L, Liao W.-W. Org. Chem. Front. 2018; 5: 801
  • 25 Wang T.-T, Zhang D, Liao W.-W. Chem. Commun. 2018; 54: 2048

    • For reviews, see:
    • 26a Cao R, Peng W, Wang Z, Xu A. Curr. Med. Chem. 2007; 14: 479
    • 26b Alekseyev RS, Kurkin AV, Yurovskaya MA. Chem. Heterocycl. Compd. 2009; 45: 889
    • 26c Smirnova OB, Golovko TV, Granik VG. Pharm. Chem. J. 2011; 45: 389
    • 26d Zhang M, Sun D. Anti-Cancer Agents Med. Chem. 2015; 15: 537
  • 27 Zhang D, Song H, Cheng N, Liao W.-W. Org. Lett. 2019; 21: 2745
    • 28a Momose Y, Maekawa T, Yamano T, Kawada M, Odaka H, Ikeda H, Sohda T. J. Med. Chem. 2002; 45: 1518
    • 28b Davyt D, Serra G. Mar. Drugs 2010; 8: 2755
    • 28c Hashimoto H, Imamura K, Haruta J, Wakitani K. J. Med. Chem. 2002; 45: 1511
    • 28d Priestap HA, Barbieri MA, Johnson FJ. J. Nat. Prod. 2012; 75: 1414
  • 29 Xiong W.-Z, Chen Z.-Y, Shao Y.-L, Li R.-H, Hu K, Chen J.-X. Org. Chem. Front. 2020; 7: 756
  • 30 Dai L, Yu S.-L, Shao Y.-L, Li R.-H, Chen Z.-Y, Lv N.-N, Chen J.-X. Chem. Commun. 2021; 57: 1376

    • For selected examples, see:
    • 31a Stevens CL, Thuillier A, Daniher FA. J. Org. Chem. 1965; 30: 2962
    • 31b Compain P, Goré J, Vatèle J.-M. Tetrahedron 1996; 52: 6647
    • 31c Liu Y, McWhorter WW. J. Org. Chem. 2003; 68: 2618
    • 31d Zhang X, Dai Y.-J, Wulff WD. Synlett 2018; 29: 2015
    • 31e Binder JT, Crone B, Kirsch SF, Liébert C, Menz H. Eur. J. Org. Chem. 2007; 10: 1636
    • 31f Movassaghi M, Schmidt MA, Ashenhurst JA. Org. Lett. 2008; 10: 4009
    • 31g Zhang X, Staples RJ, Rheingold AL, Wulff WD. J. Am. Chem. Soc. 2014; 136: 13971
    • 31h Dai L, Li X.-Q, Zeng Z, Dong S.-X, Zhou Y.-Q, Liu X.-H, Feng X.-M. Org. Lett. 2020; 22: 5041
  • 33 Cheng N, Cui S.-Q, Ma Q.-Q, Wei Z.-L, Liao W.-W. Org. Lett. 2021; 23: 1021
    • 34a Takaya H, Ito M, Murahashi SI. J. Am. Chem. Soc. 2009; 131: 10824
    • 34b Murahashi S.-I, Naota T, Taki H, Mizuno M, Takaya H, Komiya S, Mizuho Y, Oyasato N, Hiraoka M, Hirano H, Fukuoka A. J. Am. Chem. Soc. 1995; 117: 12436
    • 34c Takaya H, Naota T, Murahashi S.-I. J. Am. Chem. Soc. 1998; 120: 4244
  • 35 Zhou B.-W, Hu Y.-Y, Wang C.-Y. Angew. Chem. Int. Ed. 2015; 54: 13659