Synlett 2021; 32(17): 1730-1734
DOI: 10.1055/s-0040-1719828
letter

PEG-Supported Hypervalent Iodine Reagent for Sulfonamide Synthesis

João Macara
a   LAQV@REQUIMTE, Departamento de Química, NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal
,
Diogo L. Poeira
a   LAQV@REQUIMTE, Departamento de Química, NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal
,
Jaime A. S. Coelho
b   Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
,
a   LAQV@REQUIMTE, Departamento de Química, NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal
› Author Affiliations


Abstract

A reusable and recoverable PEG-supported hypervalent iodine reagent is reported. This hypervalent iodine reagent, immobilized in a soluble polymer support, was easily prepared in six steps from PEG-OH 2000. This reagent was successfully applied in a mild sulfonamide synthesis using a sulfinate salt and an amine in up to 95% yield. The use of the soluble polymer allowed a facile workup procedure and reaction monitoring, by simple precipitation and filtration of the reagent, with an easy recovery and subsequent re-oxidation and reuse. This approach greatly improves the sustainability of this sulfonamide synthesis method, avoiding frequent preparation of reagents and generation of waste during the purification steps.

Supporting Information



Publication History

Received: 16 July 2021

Accepted after revision: 06 August 2021

Article published online:
23 August 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Gupta P, Mahajan A. RSC Adv. 2015; 5: 26686
    • 1b Polshettiwar V, Varma RS. Curr. Opin. Drug Discovery Dev. 2007; 10: 723
  • 2 Yang K, Ke ML, Lin YG, Song QL. Green Chem. 2015; 17: 1395
    • 3a De Boer TJ, Backer HJ. Org. Synth. 1954; 34: 96
    • 3b Sridhar R, Srinivas B, Kumar VP, Narender M, Rao KR. Adv. Synth. Catal. 2007; 349: 1873
    • 4a Shi F, Tse MK, Zhou SL, Pohl MM, Radnik J, Hubner S, Jahnisch K, Bruckner A, Beller M. J. Am. Chem. Soc. 2009; 131: 1775
    • 4b Burton G, Cao P, Li G, Rivero R. Org. Lett. 2003; 5: 4373
    • 4c Yin JJ, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 6043
    • 4d Rosen BR, Ruble JC, Beauchamp TJ, Navarro A. Org. Lett. 2011; 13: 2564
    • 5a Ruano JL. G, Parra A, Yuste F, Mastranzo VM. Synthesis 2008; 311
    • 5b Huang X, Wang JC, Ni ZQ, Wang SC, Pan YJ. Chem. Commun. 2014; 50: 4582
    • 6a Tang XD, Huang LB, Qi CR, Wu X, Wu WQ, Jiang HF. Chem. Commun. 2013; 49: 6102
    • 6b Zhao JW, Xu JX, Chen JX, Wang XQ, He MH. RSC Adv. 2014; 4: 64698
    • 6c Buathongjan C, Beukeaw D, Yotphan S. Eur. J. Org. Chem. 2015; 1575
    • 6d Wei W, Liu CL, Yang DS, Wen JW, You JM, Wang H. Adv. Synth. Catal. 2015; 357: 987
    • 7a Woolven H, Gonzalez-Rodriguez C, Marco I, Thompson AL, Willis MC. Org. Lett. 2011; 13: 4876
    • 7b Deeming AS, Russell CJ, Willis MC. Angew. Chem. Int. Ed. 2015; 54: 1168
    • 7c Du BN, Wang Y, Sha WX, Qian P, Mei HB, Han JL, Pan Y. Asian J. Org. Chem. 2017; 6: 153
    • 7d Zhang F, Zheng DQ, Lai LF, Cheng J, Sun JT, Wu J. Org. Lett. 2018; 20: 1167
    • 7e Chen Y, Murray PR. D, Davies AT, Willis MC. J. Am. Chem. Soc. 2018; 140: 8781
    • 7f Waldmann C, Schober O, Haufe G, Kopka K. Org. Lett. 2013; 15: 2954
  • 8 Poeira DL, Macara J, Faustino H, Coelho JA. S, Gois PM. P, Marques MM. B. Eur. J. Org. Chem. 2019; 2695
  • 10 Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
    • 11a Brand JP, Gonzalez DF, Nicolai S, Waser J. Chem. Commun. 2011; 47: 102
    • 11b Li YF, Hari DP, Vita MV, Waser J. Angew. Chem. Int. Ed. 2016; 55: 4436
  • 12 Yusubov MS, Zhdankin VV. Curr. Org. Synth. 2012; 9: 247
  • 13 Yusubov MS, Zhdankin VV. Mendeleev Commun. 2010; 20: 185
  • 14 Li XQ, Zhang C. Synthesis 2009; 1163
  • 15 Togo H, Sakuratani K. Synlett 2002; 1966
    • 16a Ley SV, Thomas AW, Finch H. J. Chem. Soc., Perkin Trans. 1 1999; 669
    • 16b Abe S, Sakuratani K, Togo H. J. Org. Chem. 2001; 66: 6174
    • 16c Sorg G, Mengel A, Jung G, Rademann J. Angew. Chem. Int. Ed. 2001; 40: 4395
    • 16d Shang YJ, But TY. S, Togo H, Toy PH. Synlett 2007; 67
    • 16e Chen JM, Zeng XM, Middleton K, Zhdankin VV. Tetrahedron Lett. 2011; 52: 1952
  • 17 Sorg G, Mengel A, Jung G, Rademann J. Angew. Chem. Int. Ed. 2001; 40: 4395
  • 18 Chen DJ, Chen ZC. Synlett 2000; 1175
  • 19 Huang X, Zhu Q. Tetrahedron Lett. 2001; 42: 6373
    • 20a Zhu CJ, Wei YY. Adv. Synth. Catal. 2012; 354: 313
    • 20b Guo WS, Monge-Marcet A, Cattoen X, Shafir A, Pleixats R. React. Funct. Polym. 2013; 73: 192
    • 20c Mulbaier M, Giannis A. Angew. Chem. Int. Ed. 2001; 40: 4393
  • 22 Koguchi S, Mihoya A, Mimura M. Tetrahedron 2016; 72: 7633