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Abstract This paper describes a stereoselective synthesis of (–)-heli-
annuol E through intramolecular cyclization of a phenol mesylate. The
introduction of the aromatic group was achieved by -selective propar-
gyl substitution of a propargylic phosphate.
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The common sunflower Helianthus annuus is a rich

source of sesquiterpenoids such as heliannuols, which show

allelopathy to suppress or eliminate competing plant spe-

cies near native plants.1,2 To date, 13 types of heliannuol

have been isolated. Typically, they have a characteristic bi-

cyclic structure consisting of an aromatic ring fused to a

five- to eight-membered ring (Figure 1).1 In 1999, Macias et

al. isolated heliannuol E from an extract of Helianthus annu-

us L. cv. SH-222; this compound contains a fused six-mem-

bered ring.3 Because of its unique structure, syntheses of

heliannuol E have been reported by many chemists.4

The syntheses of optically active heliannuol E so far re-

ported were carried out through enzyme-mediated optical

resolution4a,c,d or by asymmetric synthesis with asymmetric

auxiliaries4f or asymmetric catalysts.4g–i Syntheses by opti-

cal resolution required separation of the compounds, and

the yields were low. In the asymmetric syntheses, the limit-

ed range of substrates is disadvantageous for the synthesis

of derivatives for structure–activity relationship studies. In

addition, the availability of auxiliaries or catalysts is a prob-

lem. Recently, we reported a copper-catalyzed -selective

propargyl substitution of the propargylic phosphate 14
with Grignard reagents (Scheme 1).5 The reaction proceeds

with high regio- and stereoselectivity, irrespective of steric

and electronic effects of the nucleophile. Optically active

propargylic phosphates can be easily synthesized by the re-

duction of alkynones with a commercially available ruthe-

nium catalyst.6 Considering these synthetic advantages, we

carried out a stereoselective synthesis of heliannuol E (5).

Figure 1  The heliannuol family
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Scheme 1  -Selective propargyl substitution

Our retrosynthetic analysis is shown in Scheme 2,

where alkyne 17 is proposed to form (–)-heliannuol E (5)

through an epoxidation and subsequent cyclization reac-

tion. We surmised that the aromatic ring in 17 could be in-

troduced through an -selective propargyl substitution re-

action between phosphate 18 and a Grignard reagent in the

presence of a copper catalyst. Furthermore, D-malic acid

(20) was envisaged as a starting compound for the synthe-

sis of phosphate 18 via ketone 19.

Scheme 2  Retrosynthetic analysis of (–)-heliannuol E (5)

Protection of malic acid (20) with cyclohexanone in the

presence of PPTS gave carboxylic acid 21 in 62% yield

(Scheme 3).7 After the reduction of 21 with BH3·SMe2, the

resulting alcohol was protected with TBDPSCl to give silyl

ether 22. Diol 23 was then obtained through a Grignard re-

action with MeMgBr in 31% yield over three steps. Subse-

quently, 23 was protected with cyclohexanone in the pres-

ence of PPTS to give acetal 24 in 79% yield, which was

deprotected by using TBAF to furnish alcohol 25 in 97%

yield. Parikh–Doering oxidation of 25, followed by the addi-

tion of (trimethylsilyl)ethyne afforded propargylic alcohols

27 and dia-27 in 91% yield.8 The stereoselectivity was deter-

mined by 1H NMR spectroscopy (27/dia-27 = 45:55). Oxida-

tion of the mixture with PCC in the presence of NaOAc

formed ketone 19, which was converted into the optically

active propargylic alcohol 278 by ruthenium-catalyzed

asymmetric transfer hydrogenation6 in 81% yield and >99%

de, as determined by 1H NMR spectroscopy. Finally, the hy-

droxy group of 27 was protected with diethyl chlorophos-

phate to give phosphate 18 in 79% yield.

Scheme 3  Synthesis of phosphate 18

The -selective propargylic substitution of 18 with

Grignard reagent 28 and CuBr·SMe2 catalyst produced com-

pound 17, which was deprotected to give diol 29 in 65%

yield (Scheme 4).5 The regioselectivity of the propargyl sub-

stitution was >99%, as determined by 1H NMR spectroscopy

(see the Supporting Information).5 After removal of the

TMS group with K2CO3/MeOH, the resulting alkyne was re-

duced by using Zn9 to form olefin 31 in 88% yield.

The final steps of the synthesis are summarized in

Scheme 5. Mesylation of 31, followed by the addition of

K2CO3 to 32, afforded epoxide 33 in 67% yield. Then, 33 was

oxidized with CAN to produce quinone 34 as the major

product, along with as other unidentified products, which

could not be separated from 34 by column chromatography

on silica gel. Subsequently, the addition of NaBH4 to the

mixture facilitated reduction to the phenol; this was fol-

lowed by a cyclization reaction, to give (–)-heliannuol E (5)

and (–)-epi-heliannuol E (epi-5) in yields of 8 and 17%, re-
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spectively. The 1H NMR and 13C NMR spectra of 5 and epi-5
were consistent with those previously reported.3,4a,b,f,h No

seven-membered-ring product was formed in the cycliza-

tion reaction of 34. We proposed that epi-5 was produced

via a cation generated by ring-opening of the epoxide.

Scheme 5  Attempted synthesis of (–)-heliannuol E (5) via epoxide 33

Next, we examined the cyclization of mesylate 35 with-

out the formation of epoxide 33 (Scheme 6). Mesylation of

diol 31 followed by oxidation with CAN and subsequent re-

duction with Na2S2O4 resulted in 35, which was unstable9

and was therefore immediately used for the next reaction.

K2CO3 was added, and the mixture was allowed to react for

15 hours to give 5 as the sole product in 11% yield. Because

the cyclization was slow, the yield was reduced due to the

decomposition of 35 over time. Therefore, the hydroxy

group was protected to form the stable silyl ether 36 in 34%

yield over four steps.10,11 Finally, cyclization of 36 in the

presence of K2CO3 resulted in the formation of 5 as the sole

product in 67% yield. In this reaction, the TBS group was re-

moved after the cyclization, as monitored by TLC, and the

yield of 5 was thereby improved (23% yield from 31).

Scheme 6  Synthesis of (–)-heliannuol E (5)

In conclusion, we have successfully synthesized (–)-heli-

annuol E (5) through an -selective propargyl substitution

as the key step. Propargylic phosphate 18 was synthesized

from D-malic acid (20) and subjected to copper-catalyzed

-selective propargyl substitution to produce alkyne 17 ef-

ficiently and with high selectivity. In the final steps of the

synthesis, cyclization of silyl ether 36 led to the formation

of 5 as the sole product. This synthesis was achieved in a to-

tal of 20 steps, with a yield of 1.5% from 20. By using the

present method, various heliannuol E derivatives could be

synthesized by changing the Grignard reagents.
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Scheme 4  Synthesis of olefin 31
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