Synthesis 2022; 54(09): 2119-2132
DOI: 10.1055/s-0040-1719896
short review

Catalytic Enantioselective Synthesis of C–N Atropisomeric Heterobiaryls

Jamie S. Sweet
,
The authors wish to acknowledge financial support from Queen’s University Belfast and the EPSRC (SR-EP/R021481/1).


Abstract

Molecules containing an atropisomeric C–N biaryl axis are gaining increasing attention in catalytic and medicinal chemistry. Despite this rising interest, relatively few approaches towards their catalytic enantioselective synthesis have been reported. Here we review these approaches, with a focus on the mechanism of asymmetric induction. Some common themes emerge: Brønsted acid catalysed cyclo-condensation and palladium-catalysed ring-closure are the most common and successful approaches. Meanwhile, the more direct but challenging axial C–N bond formation strategy remains in its infancy, with just two reports to-date. We hope this review will inform and inspire other researchers to develop new creative approaches to this important chemical motif.

1 Introduction

2 Cyclo-Condensation

3 Proximal C–N Bond Formation

4 Desymmetrisation of Intact Axes

5 ortho-C–H Functionalisation

6 Cycloaddition

7 Axial C–N Bond Formation

8 Atropisomeric N–N Axes: An Emerging Class of Heterobiaryls

9 Conclusion and Outlook



Publication History

Received: 13 December 2021

Accepted after revision: 21 December 2021

Article published online:
23 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Christie GH, Kenner J. J. Chem. Soc., Trans. 1922; 121: 614
    • 2a Bock LH, Adams R. J. Am. Chem. Soc. 1931; 53: 3519
    • 2b Bock LH, Adams R. J. Am. Chem. Soc. 1931; 53: 374
    • 3a Ren Q, Cao T, He C, Yang M, Liu H, Wang L. ACS Catal. 2021; 11: 6135
    • 3b Xia W, An QJ, Xiang SH, Li S, Wang YB, Tan B. Angew. Chem. Int. Ed. 2020; 59: 6775
    • 4a Abdellah I, Debono N, Canac Y, Vendier L, Chauvin R. Chem. Asian J. 2010; 5: 1225
    • 4b Wang L, Zhong J, Lin X. Angew. Chem. Int. Ed. 2019; 58: 15824
    • 4c An QJ, Xia W, Ding WY, Liu HH, Xiang SH, Wang YB, Zhong G, Tan B. Angew. Chem. Int. Ed. 2021; 60: 24888
    • 4d Zhang L, Xiang S.-H, Wang JJ, Xiao J, Wang J.-Q, Tan B. Nat. Commun. 2019; 10: 566
    • 5a Clayden J, Moran WJ, Edwards PJ, Laplante SR. Angew. Chem. Int. Ed. 2009; 48: 6398
    • 5b LaPlante SR, Fader LD, Fandrick KR, Fandrick DR, Hucke O, Kemper R, Miller SP. F, Edwards PJ. J. Med. Chem. 2011; 54: 7005
    • 5c Toenjes ST, Gustafson JL. Future Med. Chem. 2018; 10: 409
  • 6 Skoulidis F, Li BT, Dy GK, Price TJ, Falchook GS, Wolf J, Italiano A, Schuler M, Borghaei H, Barlesi F, Kato T, Curioni-Fontecedro A, Sacher A, Spira A, Ramalingam SS, Takahashi T, Besse B, Anderson A, Ang A, Tran Q, Mather O, Henary H, Ngarmchamnanrith G, Friberg G, Velcheti V, Govindan R. N. Engl. J. Med. 2021; 384: 2371
    • 7a Bonne D, Rodriguez J. In Axially Chiral Compounds:Asymmetric Synthesis and Applications . Tan B., Wiley-VCH; Weinheim: 2021: 75-108
    • 7b Cheng JK, Xiang SH, Li S, Ye L, Tan B. Chem. Rev. 2021; 121: 4805
    • 7c Corti V, Bertuzzi G. Synthesis 2020; 52: 2450
    • 7d Kitagawa O. Acc. Chem. Res. 2021; 54: 719
    • 7e Kumarasamy E, Raghunathan R, Sibi MP, Sivaguru J. Chem. Rev. 2015; 115: 11239
    • 7f Li T.-Z, Liu S.-J, Tan W, Shi F. Chem. Eur. J. 2020; 26: 15779
    • 7g Takahashi I, Suzuki Y, Kitagawa O. Org. Prep. Proced. Int. 2014; 46: 1
    • 7h Wang Y.-B, Tan B. Acc. Chem. Res. 2018; 51: 534
    • 7i Zilate B, Castrogiovanni A, Sparr C. ACS Catal. 2018; 8: 2981
  • 8 Zhang L, Zhang J, Ma J, Cheng D.-J, Tan B. J. Am. Chem. Soc. 2017; 139: 1714
  • 9 Man N, Lou Z, Li Y, Yang H, Zhao Y, Fu H. Org. Lett. 2020; 22: 6382
  • 10 Wang Y.-B, Zheng S.-C, Hu Y.-M, Tan B. Nat. Commun. 2017; 8: 15489
  • 11 Kwon Y, Chinn AJ, Kim B, Miller SJ. Angew. Chem. Int. Ed. 2018; 57: 6251
  • 12 Kwon Y, Li J, Reid JP, Crawford JM, Jacob R, Sigman MS, Toste FD, Miller SJ. J. Am. Chem. Soc. 2019; 141: 6698
  • 13 Kitagawa O, Yoshikawa M, Tanabe H, Morita T, Takahashi M, Dobashi Y, Taguchi T. J. Am. Chem. Soc. 2006; 128: 12923
  • 14 Suzumura N, Kageyama M, Kamimura D, Inagaki T, Dobashi Y, Hasegawa H, Fukaya H, Kitagawa O. Tetrahedron Lett. 2012; 53: 4332
  • 15 Takahashi I, Morita F, Kusagaya S, Fukaya H, Kitagawa O. Tetrahedron: Asymmetry 2012; 23: 1657
    • 16a Hirata T, Takahashi I, Suzuki Y, Yoshida H, Hasegawa H, Kitagawa O. J. Org. Chem. 2016; 81: 318
    • 16b Hirai M, Terada S, Yoshida H, Ebine K, Hirata T, Kitagawa O. Org. Lett. 2016; 18: 5700
  • 17 Sweet JS, Rajkumar S, Dingwall P, Knipe PC. Eur. J. Org. Chem. 2021; 2021: 3980
  • 18 Fan XZ, Zhang X, Li CY, Gu ZH. ACS Catal. 2019; 9: 2286
  • 19 Liu Z.-S, Xie P.-P, Hua Y, Wu C, Ma Y, Chen J, Cheng H.-G, Hong X, Zhou Q. Chem 2021; 7: 1917
  • 20 Ototake N, Morimoto Y, Mokuya A, Fukaya H, Shida Y, Kitagawa O. Chem. Eur. J. 2010; 16: 6752
  • 21 Morimoto Y, Shimizu S, Mokuya A, Ototake N, Saito A, Kitagawa O. Tetrahedron 2016; 72: 5221
  • 22 Zhang P, Wang XM, Xu Q, Guo CQ, Wang P, Lu CJ, Liu RR. Angew. Chem. Int. Ed. 2021; 60: 21718
  • 23 Huang S, Wen H, Tian Y, Wang P, Qin W, Yan H. Angew. Chem. Int. Ed. 2021; 60: 21486
  • 24 Kamikawa K, Arae S, Wu W.-Y, Nakamura C, Takahashi T, Ogasawara M. Chem. Eur. J. 2015; 21: 4954
  • 25 Diener ME, Metrano AJ, Kusano S, Miller SJ. J. Am. Chem. Soc. 2015; 137: 12369
  • 26 Crawford JM, Stone EA, Metrano AJ, Miller SJ, Sigman MS. J. Am. Chem. Soc. 2018; 140: 868
  • 27 Zhang S, Yao Q.-J, Liao G, Li X, Li H, Chen H.-M, Hong X, Shi B.-F. ACS Catal. 2019; 9: 1956
  • 28 Zhang J, Xu Q, Wu J, Fan J, Xie M. Org. Lett. 2019; 21: 6361
  • 29 Kim A, Kim A, Park S, Kim S, Jo H, Ok KM, Lee SK, Song J, Kwon Y. Angew. Chem. Int. Ed. 2021; 60: 12279
  • 30 Ye CX, Chen S, Han F, Xie X, Ivlev S, Houk KN, Meggers E. Angew. Chem. Int. Ed. 2020; 59: 13552
  • 31 Tanaka K, Takahashi Y, Suda T, Hirano M. Synlett 2008; 1724
  • 32 Onodera G, Suto M, Takeuchi R. J. Org. Chem. 2012; 77: 908
  • 33 Augé M, Barbazanges M, Tran AT, Simonneau A, Elley P, Amouri H, Aubert C, Fensterbank L, Gandon V, Malacria M, Moussa J, Ollivier C. Chem. Commun. 2013; 49: 7833
  • 34 Auge M, Feraldi-Xypolia A, Barbazanges M, Aubert C, Fensterbank L, Gandon V, Kolodziej E, Ollivier C. Org. Lett. 2015; 17: 3754
  • 35 Sun L, Chen H, Liu B, Chang J, Kong L, Wang F, Lan Y, Li X. Angew. Chem. Int. Ed. 2021; 60: 8391
  • 36 Li T, Mou C, Qi P, Peng X, Jiang S, Hao G, Xue W, Yang S, Hao L, Chi YR, Jin Z. Angew. Chem. Int. Ed. 2021; 60: 9362
  • 37 Teng F, Yu T, Peng Y, Hu W, Hu H, He Y, Luo S, Zhu Q. J. Am. Chem. Soc. 2021; 143: 2722
    • 38a Frey J, Choppin S, Colobert F, Wencel-Delord J. Chimia 2020; 74: 883
    • 38b Thonnissen V, Patureau FW. Chem. Eur. J. 2021; 27: 7189
  • 39 Wang X.-M, Zhang P, Xu Q, Guo C.-Q, Zhang D.-B, Lu C.-J, Liu R.-R. J. Am. Chem. Soc. 2021; 143: 15005
  • 40 Mohammadi Ziarani G, Fathi Vavsari V. Tetrahedron: Asymmetry 2017; 28: 203
  • 41 After submission of this review, we reported an additional atroposelective approach to C-N axially chiral N-(2-hydroxyphenyl)pyridones by phase-transfer catalyzed alkylative dynamic kinetic resolution. Sweet, J. S.; Wang, R.; Manesiotis, P.; Dingwall, P.; Knipe, P. C. Org. Biomol. Chem. 2022, DOI: 10.1039/d2ob00177b.