Synthesis 2022; 54(15): 3351-3366
DOI: 10.1055/s-0040-1719912
feature

Pyrazoles in the Intersection of Mesomeric Betaines and N-Heterocyclic Carbenes: Formation of NHC Selenium Adducts of Pyrazolium-4-aminides

Kai Hillrichs
a   Clausthal University of Technology, Institute of Organic Chemistry, Leibnizstrasse 6, 38678 Clausthal-Zellerfeld, Germany
,
Jan C. Namyslo
a   Clausthal University of Technology, Institute of Organic Chemistry, Leibnizstrasse 6, 38678 Clausthal-Zellerfeld, Germany
,
b   Fraunhofer Heinrich Hertz Institute HHI, Fiber Optical Sensor Systems, Am Stollen 19 H, 38640 Goslar, Germany
,
Eike G. Hübner
a   Clausthal University of Technology, Institute of Organic Chemistry, Leibnizstrasse 6, 38678 Clausthal-Zellerfeld, Germany
b   Fraunhofer Heinrich Hertz Institute HHI, Fiber Optical Sensor Systems, Am Stollen 19 H, 38640 Goslar, Germany
,
a   Clausthal University of Technology, Institute of Organic Chemistry, Leibnizstrasse 6, 38678 Clausthal-Zellerfeld, Germany
› Author Affiliations


Abstract

Starting from 4-nitropyrazole, eight mesoionic pyrazolium-4-aminides were prepared by a six-step reaction sequence. The deprotonation of 1,2-disubstituted 4-amido-1H-pyrazolium salts by an anion exchange resin in its hydroxide form is the final step of the synthesis. A tautomeric equilibrium between the mesoionic compounds (pyrazolium-4-aminides) and N-heterocyclic carbenes (pyrazol-3-ylidenes) can be formulated; however, the NHC tautomers were not detected by means of NMR spectroscopy in polar aprotic solvents such as DMSO-d 6 or MeCN-d 3. Apart from tautomerism, anionic N-heterocyclic carbenes can be formulated as a result of a deprotonation of the mesoionic compounds­. Trapping reactions were performed with selenium, which resulted in the formation of pyrazole-3-selenones. Methylation at the selenium atom gave the corresponding 3-(methylselanyl)-4-amido-1H-pyrazolium salts, which were deprotonated to give new mesomeric betaines, 3-(methylselanyl)-1H-pyrazolium-4-aminides as unique compounds­. DFT-calculations as well as 77Se NMR spectroscopic measurements were carried out.

Supporting Information



Publication History

Received: 04 February 2022

Accepted after revision: 17 February 2022

Article published online:
20 April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Böttinger C. Justus Liebigs Ann. Chem. 1881; 208: 122
  • 2 Breslow R. J. Am. Chem. Soc. 1958; 80: 3719
  • 3 Brown BR, Hammick DL. J. Chem. Soc. 1949; 659
    • 4a Quast H, Frankenfeld E. Angew. Chem., Int. Ed. Engl. 1965; 4: 691
    • 4b Quast H, Schmitt E. Justus Liebigs Ann. Chem. 1970; 732: 43
  • 5 Katritzky AR, Awartani R, Patel RC. J. Org. Chem. 1982; 47: 498
    • 6a Haake P, Bausher LP. J. Phys. Chem. 1968; 72: 2213
    • 6b Maier G, Endres J. Eur. J. Org. Chem. 1998; 1517
    • 6c Van Ausdall BR, Glass JL, Wiggins KM, Aarif AM, Louie J. J. Org. Chem. 2009; 74: 7935
    • 6d Zhou H, Zhang W.-Z, Liu C.-H, Qu J.-P, Lu X.-B. J. Org. Chem. 2008; 73: 8039
  • 7 Breslow R. J. Am. Chem. Soc. 1958; 80: 3719
    • 8a Wanzlick H.-W, Schikora E. Angew. Chem. 1960; 72: 494
    • 8b Wanzlick H.-W, Lachmann B, Schikora E. Chem. Ber. 1965; 98: 3170
    • 8c Öfele K. J. Organomet. Chem. 1968; 12: P42
  • 9 Arduengo AJ, Harlow RL, Kline M. J. Am. Chem. Soc. 1991; 113: 361
    • 10a N-Heterocyclic Carbenes in Organocatalysis . Biju AT. Wiley-VCH; Weinheim: 2019
    • 10b N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis. Nolan SP. Wiley-VCH; Weinheim: 2014
    • 10c Science of Synthesis: N-Heterocyclic Carbenes in Catalytic Organic Synthesis. Nolan SP, Cazin CS. J. Thieme Verlag; Stuttgart: 2017
    • 10d N-Heterocyclic Carbenes in Transition Metal Catalysis. In Topics in Organometallic Chemistry, Vol. 21. Glorius F. Springer; Berlin: 2010
    • 10e Merceron-Saffon N, Baceiredo A, Gornitzka H, Bertrand G. Science 2003; 301: 1223
    • 10f Hahn FE, Jahnke MC. Angew. Chem. Int. Ed. 2008; 47: 3122
    • 10g Budagumpi S, Haque RA, Endud S, Rehman GU, Salman AW. Eur. J. Inorg. Chem. 2013; 4367
    • 10h Hille C, Kühn FE. Dalton Trans. 2015; 15
    • 10i Sandtorv AH, Leitch C, Bedringaas SL, Gjertsen BT, Bjørsvik H.-R. ChemMedChem 2015; 10: 1522
    • 10j Nasr A, Winkler A, Tamm M. Coord. Chem. Rev. 2016; 316: 68
    • 10k Ezugwu CI, Kabir NA, Yusubov M, Verpoort F. Coord. Chem. Rev. 2016; 307: 188
    • 10l Ohki Y, Seino H. Dalton Trans. 2016; 874
    • 10m Ritleng V, Henrion M, Chetcuti MJ. ACS Catal. 2016; 890
  • 11 Doddi A, Peters M, Tamm M. Chem. Rev. 2019; 119: 6994
  • 12 Danopoulos AA, Simler T, Braunstein P. Chem. Rev. 2019; 119: 3730
  • 13 Schmidt A, Wiechmann S, Otto CF. Adv. Heterocycl. Chem. 2016; 119: 143
    • 14a Siemeling U, Memczak H, Bruhn C, Vogel F, Träger F, Baio JE, Weidner T. Dalton Trans. 2012; 2986
    • 14b Korotkikh NI, Saberov VSh, Kiselev AV, Glinyanaya NV, Marichev KA, Pekhtereva TM, Dudarenko GV, Bumagin NA, Shvaika OP. Chem. Heterocycl. Compd. 2012; 47: 1551
    • 14c Bittermann A, Baskakov D, Herrmann WA. Organometallics 2009; 28: 5107
  • 15 Kuhn N, Kratz T. Synthesis 1993; 561
    • 16a Medici F, Gontard G, Derat E, Lemière G, Fensterbank L. Organometallics 2018; 37: 517
    • 16b Hetterscheid DG. H, Reek JN. H. Chem. Commun. 2011; 47: 2712
    • 16c Cesari C, Cingolani A, Teti M, Messori A, Zacchini S, Zanotti V, Mazzoni R. Eur. J. Inorg. Chem. 2020; 1114
    • 17a Li W, Tang J, Li S, Zheng X, Yuan M, Xu B, Jiang W, Fu H, Li R, Chen H. Org. Lett. 2020; 22: 7814
    • 17b Prades A, Viciano M, Sanau M, Peris E. Organometallics 2008; 27: 4254
    • 17c Tafipolsky M, Scherer W, Öfele K, Artus G, Pedersen B, Herrmann WA, McGrady GS. J. Am. Chem. Soc. 2002; 124: 5865
    • 17d Schütz J, Herdtweck E, Herrmann WA. Organometallics 2004; 23: 6084
  • 18 Schmidt A, Guan Z. Synthesis 2012; 3251
  • 19 Schmidt A, Wiechmann S, Freese T. ARKIVOC 2013; (i): 424
    • 20a Nylund PV. S, Ségaud NC, Albrecht M. Organometallics 2021; 40: 1538
    • 20b Lee E, Lee J, Yandulov DV. Eur. J. Inorg. Chem. 2017; 2058
    • 20c Ségaud N, McMaster J, van Koten G, Albrecht M. Inorg. Chem. 2019; 58: 16047
    • 20d Ainembabazi D, Wang K, Finn M, Ridenour J, Voutchkova-Kostal A. Green Chem. 2020; 22: 6093
    • 20e Filonenko GA, Lugger JA. M, Liu C, van Heeswijk EP. A, Hendrix MM. R. M, Weber M, Müller C, Hensen EJ. M, Sijbesma RP, Pidko EA. Angew. Chem. Int. Ed. 2018; 57: 16385
    • 20f Roselló-Merino M, Díez J, Conejero S. Chem. Commun. 2010; 46: 9247
    • 21a Färber C, Leibold M, Bruhn C, Maurer M, Siemeling U. Chem. Commun. 2012; 227
    • 21b César V, Tourneux J.-C, Vujkovic N, Brousses R, Lugan N, Lavigne G. Chem. Commun. 2012; 48: 2349
    • 21c Danopoulos AA, Monakhov KYu, Braunstein P. Chem. Eur. J. 2013; 19: 450
    • 22a César V, Mallardo V, Nano A, Dahm G, Lugan N, Lavigne G, Bellemin-Laponnaz S. Chem. Commun. 2015; 51: 5271
    • 22b Benhamou L, Vujkovic N, César V, Gornitzka H, Lugan N, Lavigne G. Organometallics 2010; 29: 2616
    • 22c Benhamou L, César V, Gornitzka H, Lugan N, Lavigne G. Chem. Commun. 2009; 4720
    • 22d Biju AT, Hirano K, Fröhlich R, Glorius F. Chem. Asian J. 2009; 4: 1786
    • 22e Pidlypnyi N, Uhrner F, Nieger M, Drafz MH. H, Hübner EG, Namyslo JC, Schmidt A. Eur. J. Org. Chem. 2013; 7739
    • 23a Ramsden CA. Tetrahedron 2013; 69: 4146
    • 23b Ramsden CA, Oziminski WP. Tetrahedron 2014; 70: 7158
    • 23c Oziminski WP, Ramsden CA. Tetrahedron 2015; 71: 7191
  • 24 Wiechmann S, Freese T, Drafz MH. H, Hübner EG, Namyslo JC, Nieger M, Schmidt A. Chem. Commun. 2014; 50: 11822
    • 25a Freese T, Nieger M, Namyslo JC, Schmidt A. Tetrahedron Lett. 2019; 60: 1272
    • 25b Freese T, Namyslo JC, Nieger M, Schmidt A. RSC Adv. 2019; 9: 4781
    • 25c Freese T, Lücke A.-L, Namyslo JC, Nieger M, Schmidt A. Eur. J. Org. Chem. 2018; 1646
    • 25d Freese T, Lücke A.-L, Schmidt CA. S, Polamo M, Nieger M, Namyslo JC, Schmidt A. Tetrahedron 2017; 73: 5350
  • 26 Mummel S, Lederle F, Hübner EG, Namyslo JC, Nieger M, Schmidt A. Angew. Chem. Int. Ed. 2021; 60: 18882
    • 27a Lavigne G, César V, Lugan N. Chem. Eur. J. 2010; 16: 11432
    • 27b César V, Lugan N, Lavigne G. J. Am. Chem. Soc. 2008; 130: 11286
    • 28a Schmidt A, Münster N, Dreger A. Angew. Chem. Int. Ed. 2010; 49: 2790
    • 28b Schmidt A, Habeck T. Lett. Org. Chem. 2005; 2: 37
    • 29a Ollis WD, Stanforth SP, Ramsden CA. Tetrahedron 1985; 41: 2239
    • 29b Katritzky AR. Chem. Ind. 1955; 521
    • 30a Schmidt A, Beutler A, Albrecht M, Ramírez FJ. Org. Biomol. Chem. 2008; 6: 287
    • 30b Fèvre M, Pinaud J, Leteneur A, Gnanou Y, Vignolle J, Taton D, Miqueu K, Sotiropoulos J.-M. J. Am. Chem. Soc. 2012; 134: 6776
    • 30c Sauvage X, Demonceau A, Delaude L. Adv. Synth. Catal. 2009; 351: 2031
    • 30d Kolychev EL, Bannenberg T, Freytag M, Daniliuc CG, Jones PG, Tamm M. Chem. Eur. J. 2012; 18: 16938
    • 31a Guan Z, Wiechmann S, Drafz M, Hübner E, Schmidt A. Org. Biomol. Chem. 2013; 11: 3558
    • 31b Schmidt A, Merkel L, Eisfeld W. Eur. J. Org. Chem. 2005; 2124
  • 32 Castells J, Calahorra FL, Domingo L. Tetrahedron Lett. 1985; 26: 5457
  • 33 Dreger A, Nieger M, Drafz M, Schmidt A. Z. Naturforsch., B: J. Chem. Sci. 2012; 67: 359
  • 34 Schmidt A, Nieger M. Heterocycles 1999; 51: 2119
  • 36 Schmidt A, Mordhorst T, Habeck T. Org. Lett. 2002; 4: 1375
  • 37 Han SJ, Kim HT, Joo JM. J. Org. Chem. 2016; 81: 689
  • 38 Liu J.-Q, Hao B.-Y, Zou H, Zhang W.-H, Chen X.-Z. ARKIVOC 2014; (v): 72
  • 39 Zhang N, Sun Q, Wang T. UA Patent 336982, 2015
  • 40 Deev S, Batsyts S, Sheina E, Shestakova TS, Khalimbadzha I, Kiskin MA, Charushin V, Chupakhin O, Paramonov AS, Shenkarev ZO, Namyslo JC, Schmidt A. Eur. J. Org. Chem. 2020; 450
  • 41 Zhang J, Hübner EG, Namyslo JC, Nieger M, Schmidt A. Org. Biomol. Chem. 2018; 16: 6801
    • 42a Liu M, Namyslo JC, Nieger M, Polamo M, Schmidt A. Beilstein J. Org. Chem. 2016; 12: 2673
    • 42b Liu M, Nieger M, Hübner E, Schmidt A. Chem. Eur. J. 2016; 5416
  • 45 Mathew J, Suresh CH. Inorg. Chem. 2010; 49: 4665
  • 46 Perrin L, Clot E, Eisenstein O, Loch J, Crabtree RH. Inorg. Chem. 2001; 40: 5806
  • 47 Tolman CA. J. Am. Chem. Soc. 1970; 92: 2953
  • 48 Tukov AA, Normand AT, Nechaev MS. Dalton Trans. 2009; 7015
  • 49 Bourissou D, Guerret O, Gabbaï FP, Bertrand G. Chem. Rev. 2000; 100: 39
  • 50 Bernhammer JC, Frison G, Huynh HV. Chem. Eur. J. 2013; 19: 12892
  • 51 Verlinden K, Buhl H, Frank W, Ganter C. Eur. J. Inorg. Chem. 2015; 2416
    • 52a Huynh HV, Han Y, Jothibasu R, Yang JA. Organometallics 2009; 28: 5395
    • 52b Teng Q, Huynh HV. Dalton Trans. 2017; 614
  • 53 Huynh HV. Chem. Rev. 2018; 118: 9457
    • 54a Review: Nasr A, Winkler A, Tamm M. Coord. Chem. Rev. 2016; 316: 68

    • Recent publications:
    • 54b Frosch J, Koneczny M, Bannenberg T, Tamm M. Chem. Eur. J. 2021; 4349
    • 54c Grineva AA, Valyaev DA, César V, Filippov OA, Khrustalev VN, Nefedov SE, Lugan N. Angew. Chem. Int. Ed. 2018; 57: 7986 ; Angew. Chem. 2018, 130, 8118
    • 54d Medici F, Gontard G, Derat E, Lemiere G, Fensterbank L. Organometallics 2018; 37: 517