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Enzymatic Intra- and Intermolecular Hydroalkylations 
of Alkenes through Ground-State Electron Transfer

Significance: Hyster and co-workers report intra- 
and intermolecular reductive hydroalkylations of 
aromatic olefins to form cyclopentanones or linear 
ketones in excellent yields and enantioselectivities. 
Quadruply mutated or wild-type nicotinamide-
dependent cyclohexanone reductase (NCR), respec-
tively, serve as efficient biocatalysts. Starting from 
-bromo ketones, ground-state electron transfer 
from a flavinmononucleotide generates a ketyl rad-
ical that, through mesolytic C–Br bond cleavage, 
generates the reactive -ketonyl radical. Notably, 
whereas the stereocenter in the cyclization reaction 
is set in the C–C bond-forming step, the enantio-
control in intermolecular reactions originates from 
a stereoselective radical-terminating hydrogen-
atom transfer.

Comment: Flavin-dependent ene-reductases 
(EREDs) have been previously applied in photo-
enzymatic settings (see, for example: K. F. 
Biegasiewicz et al. Science 2019, 364, 1166). Where-
as those reactions rely on the photoexcitation of a 
charge-transfer complex between enzyme, cofac-
tor, and substrates, the analogous ground-state 
electron transfer had not previously been utilized as 
an initiation mechanism in C–C bond-forming reac-
tions. The authors therefore selected -bromo ke-
tones as substrates due to their relatively high 
reduction potential, rendering ground-state 
reactivity kinetically feasible. Although the present 
method is an impressive example of enantiocontrol 
over real radical intermediates, the extension to 
less-stabilized nonaromatic substrates represents a 
considerable challenge for future research.
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