Unveiling Novel Synthetic Pathways through Brook Rearrangement

M. Agbaria, N. Egbaria, Z. Nairoukh

Brook rearrangement

\[
\begin{align*}
\text{O}^- & \quad \text{M}^+ \\
\text{R}_1^- \text{SiR}_3 & \quad \overset{\text{via}}{\iff} \quad \text{R}_1^- \text{O}^- \text{SiR}_3 \\
\text{R}_1^- \text{SiR}_3 & \quad \overset{\text{M}^+}{\iff} \quad \text{R}_1^- \text{O}^-
\end{align*}
\]

Capabilities:
- C–C and C–X bond formation
- C–C and C–X bond cleavage
- Stereodefined olefins formation
- Annulation reactions
- Dearomatization reactions

Though it was downloaded for personal use only, unauthorized distribution is strictly prohibited.
Recent Advances in the Multicomponent Synthesis of Heterocycles Using 5-Aminotetrazole

R. Javahershenas*
H. Mei
M. Koley
V. A. Soloshonok
A. Makarem*

Urmia University, Iran
University of Hamburg, Germany

Catalytic Asymmetric Synthesis of α-Mono and α,α-Disubstituted 5- and 6-Membered α-Aza-lactams

C. Palomo
A. Landa*
M. Oiarbide*

University of the Basque Country
UPV/EHU, Spain

© 2024. Thieme. All rights reserved.
Unveiling Novel Synthetic Pathways through Brook Rearrangement

M. Agbaria
N. Egbaria
Z. Nairoukh*
The Hebrew University of Jerusalem, Israel

Brook rearrangement

\[\text{RO}_1 \text{SiR}_3 \xrightarrow{\text{M}} \text{RO}_1 \text{SiR}_3 \]

Capabilities:
- C–C and C–X bond formation
- Annulation reactions
- C–C and C–X bond cleavage
- Dearomatization reactions
- Stereodefined olefins formation

Accessing meta-Enone-Substituted Anisoles using ArN$_2$BF$_4$ as Precatalyst via Rearrangement of Alkyne-Tethered Cyclohexadienones

A. Rai
U. Das*
CSIR-National Chemical Laboratory, India

ArN$_2$BF$_4$ (5 mol%) in MeOH, 30 °C

* Mild reaction conditions
- Broad scope, 28 examples
- Up to 99% yield

Sequential Paired Electrochemical Transformation of Styrene Oxide via Anodic Meinwald Rearrangement and Cathodic Nitromethylation in an Electrochemical Flow Reactor with Catalytic Electrical Input

E. Sato*
K. Nagamine
C. Sasaki
S. Kunimoto
K. Mitsudo
S. Suga*
Okayama University, Japan

Meinwald rearrangement

Nitromethylation

© 2024. Thieme. All rights reserved.
Ketyl Radical Enabled Synthesis of Oxetanes

Synthesis Challenge: Access to Oxetanes from Unactivated Carbonyls and Alkenes

- Acetyl Iodide Activation of Carbonyls to α-Oxy Iodides
- Ketyl Radical Intermediate
- One Pot Protocol
- Trifunctionalized Oxetanes

BF₃·OEt₂-Mediated (3+2) Cycloaddition Reactions of Donor-Acceptor Cyclopropanes (DACs) with Cyanamides: Access to Cyclic Amidines

- BF₃·OEt₂ (3 equiv)
- DCE, 60 °C, 6 h
- Up to 85%

Metal-Free Synthesis of Selanyl-Substituted Chromenones via Selanylation/Cyclization of Alkynyl Aryl Ketones

- 25 examples, up to 82% yield

© 2024. Thieme. All rights reserved.
Ex-Chiral-Pool Synthesis of Optically Active 4-Alkylidene-Tetrahydroisoquinolines – Key Intermediates for Crinane Alkaloid Total Syntheses

S. Bernhard
N. Kümmerer
D. Urgast
F. Hack
J. Ungelenk
A. Frank
D. Schollmeyer
U. Nubbemeyer*
Johannes Gutenberg-Universität Mainz, Germany

Synthesis 2024, 56, 2537–2548
DOI: 10.1055/a-2328-2947

Synthesis of Methoxy Analogues of Coenzyme Q_{10} Metabolites from Parsley Seed Extracts via Baeyer–Villiger Rearrangement of Carbonyl-Substituted Polyalkoxybenzenes

D. V. Demchuk
O. I. Adaeva
D. V. Tsyganov
D. I. Nasyrova
R. A. Dolotov
E. A. Muravsky
A. E. Varakutin
A. V. Samet
V. V. Semenov*
N. D. Zelinsky Institute of Organic Chemistry RAS, Russian Federation

Synthesis 2024, 56, 2549–2557
DOI: 10.1055/s-0043-1775368

Radical Allylation of Aldehydes with Allenes by Photoredox Cobalt and Chromium Dual Catalysis

H. Li
X. Wang
R. Cao
X. Qi
E. Hao
L. Shi*
Dalian University of Technology, P. R. of China

Synthesis 2024, 56, 2558–2564
DOI: 10.1055/s-0043-1774866
Photocatalytic Annulation of Enaminones with Thioureas for the Synthesis of 2-Aminothiazoles via Tandem C=S and C=N Bond Formation

Q. Huang
C. Wan*
J.-P. Wan*
Jiangxi Normal University, P. R. of China

Synthesis 2024, 56, 2565–2571
DOI: 10.1055/a-2315-1934

Electrochemical Oxidative Cross-Coupling for the Construction of C(sp^3)–C(sp^3) Bonds

K.-M. Wen
X.-H. Chang*
C. Guo*
University of Science and Technology of China, P. R. of China
Anhui Agricultural University, P. R. of China

Synthesis 2024, 56, 2572–2580
DOI: 10.1055/a-2309-1501

Cyclopentadienone and Pyrone Derivatives as Precursors of Electron-Deficient Cycloheptatrienes: Quantum Chemical Investigation and Synthesis

A. D. Sokolova
A. Y. Belyy
R. F. Salikov*
D. N. Platonov
Y. V. Tomilov*
N. D. Zelinsky Institute of Organic Chemistry, Russian Federation

Synthesis 2024, 56, 2581–2587
DOI: 10.1055/a-2317-6659
Stereodivergent Synthesis of the Four Stereoisomers of Diethyl 4-Hydroxyphosphopipeolate from Ethyl (R)-4-Cyano-3-hydroxybutanoate

J. C. Morales-Solis
M. Ordoñez*
J. L. Viveros-Ceballos
Universidad Autónoma del Estado de Morelos, Mexico