Aziridines Cross-Dimerize to Larger N-Heterocycles

Significance: Azepines, dihydropyridinone, and uracil are key N-heterocyclic motifs found in numerous drug molecules. However, syntheses of these rings often require multistep routes and suffer from poor efficiency. The authors present a robust catalytic method to access these azaheterocycles in an enantiospecific manner via cross-dimerization of aziridines or diaziridinones with cyclopropenones or cyclobutenones. This ring-expansion strategy enabled step-efficient syntheses of several pharmaceutical agents and natural products, underpinning the broader synthetic utility.

Comment: Lewis acid-mediated, Pd-catalyzed cross-dimerization of sulfonlated aziridines to benzylocylobutane afforded the benzazepine skeleton. A synergistic Pd-Cu catalyst system was used to access the pyridinone and uracil motifs from cyclopropenone. A mechanistic study revealed a Pd0/II/IV cycle starting with an oxidative C–C cleavage of the strained carbocycle followed by oxidative aziridine opening to form a PdIV intermediate, which was supported by computational models. This protocol provided concise routes to useful drug precursors (e.g., SKF 38393, GSK 189254, ivabradine) with further synthetic modifications of the azepines, rendering this a potential retrosynthetic tool.

Proposed mechanism:

- **Oxidative addition of C–C bond**
- **SN2-type oxidative addition of C–N bond**
- **Nucleophilic attack of anionic sulfonamide**
- **Reductive elimination**