Harnessing C–O Bonds in Stereoselective Cross-Coupling and Cross-Electrophile Coupling Reactions

A. B. Sanford, E. R. Jarvo
Harnessing C–O Bonds in Stereoselective Cross-Coupling and Cross-Electrophile Coupling Reactions

A. B. Sanford
E. R. Jarvo*
University of California Irvine, USA

(4+1)-Cycloadditions Exploiting the Biphilicity of Oxyphosphonium Enolates and RhII/PdII-Stabilized Metallocarbenes for the Construction of Five-Membered Frameworks

Z. D. Tucker
B. L. Ashfeld*
University of Notre Dame, USA
Allenes: Versatile Building Blocks in Cobalt-Catalyzed C–H Activation

R. K. Shukla
A. M. Nair
C. M. R. Volla*
Indian Institute of Technology Bombay (IIT Bombay), India

Cooperative Hydrogen Atom Transfer: From Theory to Applications

P. V. Kattamuri
J. G. West*
Rice University, USA

Synthetic Studies on the Viridin Skeleton through Regio- and Stereoselective Functionalization of the AE-Ring Moiety

S. Hori
S. Ishida
G. Itoh
K. Sugiyama
C. Yuki
M. Egi
K. Yahata
T. Ikawa
S. Akai*
Osaka University, Japan
Iron-Mediated Radical Nitrohalogenation Reactions of Enynes with tert-Butyl Nitrite

Y. Ren, Y. Ge, Q. Yan*, Y. Tian*, J. Wu, L. Li, Z. Li*
Hebei University, P. R. of China
Luoyang Normal University, P. R. of China

YAr/H**Me**O**Y**OBr/I**Ar/H**Me

Y = TsN or O

+ TBN KI/NaBr+

convenient operations
good selectivity (Z/E ratio up to 100%)

18 examples, yield up to 90%

various nitro/halogen-containing heterocycles

FeSO₄·7H₂O (0.4 equiv)

CH₃CN, 50 °C

Facile Synthesis of 4-Perfluoroalkylated 2H-Pyran-2-ones Bearing Indole Skeleton via a Base-Promoted Cascade Process

W. Zhou, Q. Huang, L. Shen, J. Han, J. Chen, W. He, H. Deng, M. Shao, H. Zhang*, W. Cao*
Shanghai University, P. R. of China
Shanghai Institute of Organic Chemistry, P. R. of China

CN

RF

CO₂Me

Et₃N, THF

40 °C, 24 h

16 examples up to 99% yield

Diastereoselective Synthesis of Spiropyrazolones via 1,3-Dipolar [3+2] Cycloadditions between Pyrazolone-Based Olefins and N,N'-Cyclic Azomethine Imines

Beijing University of Technology, P. R. of China

PhCO₂H (20 mol%)

toluene

110 °C, 2 h

32 examples up to 98% yield up to >20:1 dr
Ligand-Free Palladium-Catalyzed Carbonylative Suzuki Couplings of Vinyl Iodides with Arylboronic Acids under Substoichiometric Base Conditions

Z. Yang
P.-X. Gong
J. Chen
J. Zhang
X. Gong
W. Han*
Nanjing Normal University, P. R. of China

H₂O₂-Promoted Alkylation of Quinoxalin-2(1H)-ones with Styrenes and Dimethyl Sulfoxide

X. Zhong
H. Yao*
B. Wang
Z. Yan
F. Xiong
S. Lin*
Nanchang University, P. R. of China

Iron-Catalyzed Oxidative Radical Alkoxy carbonylation of Activated Alkenes with Carbazates toward Alkoxy carbonylated Benzimidazo[2,1-a]isoquinolin-6(5H)-ones

Y. Tang*
M. Li
H. Huang
F. Wang
X. Hu
X. Zhang*
Hunan University of Arts and Science, P. R. of China
Hunan Provincial Key Laboratory of Water Treatment Functional Materials, P. R. of China
Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, P. R. of China
Palladium-Catalyzed Aerobic Oxidative Carbonylation of Amines Enables the Synthesis of Unsymmetrical N,N'-Disubstituted Ureas

H. Zeng
H. Du
X. Gong
J. Zhang
W. Han*
Nanjing Normal University, P. R. of China
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, P. R. of China

Letter
1223

Green Aerobic Oxidation of Thiols to Disulfides by Flavin–Iodine Coupled Organocatalysis

M. Oka
R. Kozako
H. Iida*
Shimane University, Japan

Letter
1227

Chiral Phosphoric Acid Catalyzed Enantioselective [4+3]-Cyclization Reaction of Indol-4-ylmethanols and Quinone Esters

Z. Chen
L. Wang
Y. Qian
X. Lin*
Zhejiang University, P. R. of China

Letter
1231
Diastereoselective Synthesis of Morpholine Derivatives from Grignard Reagents and N-Sulfinyl Imines

\[
\begin{align*}
\text{R} = & \text{primary alkyl, secondary alkyl, (het)aryl} \\
1) & \text{AlMe}_3 (1.1 \text{ equiv}) \\
& \text{TBME, } -78 \degree \text{C} \\
2) & \text{NaH (3.0 \text{ equiv})} \\
& 18\text{-crown}-6 (0.5 \text{ equiv}) \\
& \text{THF, rt}
\end{align*}
\]

up to 76% yield
up to >95:5 dr

\[
\begin{align*}
\text{R}^1 & \text{R}^2 / \text{H} \\
\text{SmI}_2 & \text{-D}_2\text{O} \\
\text{R}^1 = & \text{alkyl or aryl} \\
\text{43 examples}
\end{align*}
\]

D-incorporation >98%
D\(_2\)O as deuterium source
Mild reaction conditions
Excellent chemoselectivity

Synthetic applications in deuterated drugs, hormones, and natural products

Chiral Silver Alkoxide Catalyzed Asymmetric Aldol Reaction of Alkenyl Esters with Isatins

\[
\begin{align*}
\text{OCOCX}_3 & \text{ + \text{R}}^1\text{R}^2\text{O} \\
& (\text{R})-\text{DM-BINAP (8 mol%) } \\
& \text{AgOTf (16 mol%)} \\
& (i-\text{Pr}_2\text{NEt (20 mol%)} \\
& \text{R}^2\text{OH (2 equiv)} \\
& \text{THF, } -40 \text{ or } -20 \degree \text{C}
\end{align*}
\]

up to >99% yield
anti/syn = 92:8 to <1:20
up to 98% ee