Ruthenium-Catalyzed Enantioselective Reductive Amination

Significance: The authors report a ruthenium-catalyzed reductive amination of ketones. Ru-(OAc)$_2$((S)-binap) is used as catalyst and ammonium trifluoroacetate as the nitrogen source; hydrogen pressures of 0.8 MPa are needed. The procedure allows the formation of chiral amines in high enantiomeric excess and quantitative conversions. Sensitive functional groups such as esters and amides are tolerated.

Comment: Reductive aminations are widespread reactions in the pharmaceutical industry. This direct asymmetric reductive amination allows for the generation of chiral secondary amines from ketones, which has been challenging before. Diarylketones, fused ring ketones, and 2-acetyl-6-pyridone showed no reaction under these conditions up to 87% yield up to >99% ee >13 examples

Selected examples:

<table>
<thead>
<tr>
<th>R$_1$</th>
<th>R$_2$</th>
<th>Product</th>
<th>Yield/Conversion/ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Het</td>
<td>Ar</td>
<td>70.5% yield 97.4% ee as HCl salt</td>
<td></td>
</tr>
<tr>
<td>Alk</td>
<td></td>
<td>100% conversion >99.9% ee</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>99.8% conversion 95.3% ee as HCl salt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>73.9% yield 93.8% ee as HCl salt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>94.6% conversion 95% ee</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>58.5% yield 73.9% ee as HCl salt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>95% conversion 39.0% ee</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>85.5% yield 96.9% ee</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>79.4% yield 99.8% ee</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>79.4% yield 97.0% ee</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>68.2% yield 94.7% ee</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>97.4% conversion >99.9% ee</td>
<td></td>
</tr>
</tbody>
</table>

SYNFACTS Contributors: Paul Knochel, Johannes H. Harenberg

Synfacts 2021, 17(07), 0767 Published online: 17.06.2021

DOI: 10.1055/s-0040-1720440; **Reg.-No.:** P07021SF

© 2021, Thieme. All rights reserved.

Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany