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Dear Readers,

As the summer winds down and the days start to 
get shorter, there are strong hopes that the looming 
academic year will be as close as possible to normality, 
i.e. what it used to be before the pandemic. We will 
probably have to keep wearing face masks indoors, as 
well as continuing to behave a bit more cautiously than 
we used to do in our pre-Covid life, at least in terms 
of social gatherings, but – thanks to the vaccines – we 
are hopefully getting there now. So once again, we 
should be deeply grateful to science and research, 
which made possible an unprecedentedly fast develop-
ment and distribution of a massive number of doses 
of effective vaccines. Meanwhile, anti-Covid drugs are 
being developed, and that will likely be the final nail in 
the coffin of this bloody virus, besides hopefully giving 
us some effective pharmacological weapon for coping 
with any other future wave of new coronaviruses. Sadly, 
not everybody is able to appreciate what science can 
do – and is already doing – for all of us, but I believe 
that, as researchers, we have a critically important duty 
to relentlessly inform and educate every single member 
of the public – and of our governing bodies too – about 
the merits and importance of science and research. In 
my opinion these are the only effective tools we have 
for facing the threats lurking in the future of humanity,  
be those medical or environmental or else. So let’s 
make the voice of science heard, and try to be louder 
than the voice of anti-science!

This new issue of SYNFORM starts with a Young Career 
Focus interview with emerging researcher Guillaume 
Berionni (Belgium), who talks about his views on organ
ic chemistry and his recent research achievements. 
The second article covers the ground-breaking radical 
Minisci-style approach to the selective C–H borylation 
of azines using boryl radicals developed by D. Leonori 

(United Kingdom). The next article presents an  
account of the recent Science paper by P. J. Walsh and  
E. J. Schelter (USA) on the role of chlorine radical com-
plexation in photocatalytic C–H activation reactions. 
Finally, we have the opportunity to learn more about 
another recent Science paper, by S. S. Stahl (USA), on 
the C(sp3)–H methylation via peroxide photosensitiza-
tion/Ni-mediated radical coupling and its prospective 
applications in drug discovery and development.

Enjoy your reading!
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INTERVIEW

SYNFORM  What is the focus of your current research 
activity?

Prof. G. Berionni My group’s research interests range over 
a variety of topics within the fields of organometallic, main-
group and physical organic chemistry (www.unamur.be/en/
sci/chemistry/rco). Our current research focuses on the de-
velopment of structurally unique nitrogen- and phosphorus-
containing Lewis bases and new carbon- and boron-containing 
Lewis acids. We investigate their reactivity and properties, 
and then combine them in pairs with molecular linkers for 
creating new bifunctional acid–base catalysts. Creating new 
chemical entities based on main-group elements to mimic 
the rich and multifaceted chemistry of transition-metal com-
plexes is an exciting challenge and requires a combination of 
state-of-the-art synthetic and computational chemistry.

SYNFORM  When did you get interested in synthesis?

Prof. G. Berionni My interest in organic and organometal-
lic synthesis began during my research activities throughout 
my chemistry studies in various universities in the area of 
Paris (France). I worked at the Universities of Paris-South-
Saclay, Paris-Est (with Prof. Gosmini), Sorbonne – Pierre and 
Marie Curie University (Prof. Thorimbert and Prof. Malacria) 
and Paris-Cergy (Prof. Cahiez). All the researchers I met were 
fascinated by organometallic synthesis and reactions mechan
isms. In the last year of my Master’s studies, I published my 
first research communication (Synlett 2007, 18, 2829–2832), 
and it motivated me to start a PhD at the University of 
Versailles (Prof. Goumont and Prof. Terrier).

Young Career Focus: Prof. Guillaume Berionni  
(University of Namur, Belgium)

Background and Purpose. SYNFORM regularly meets young up-and-coming researchers who are performing  
exceptionally well in the arena of organic chemistry and related fields of research, in order to introduce them to 
the readership. This Young Career Focus presents Prof. Guillaume Berionni (University of Namur, Belgium).

Biographical Sketch

Guillaume Berionni received his 
PhD in 2010 from the University of 
Versailles, France. He then moved 
to the Ludwig Maximilian Uni-
versity of Munich (Germany) as a 
Humboldt postdoctoral fellow, and 
became independent PI researcher 
under the guidance of Prof. H. Mayr 
and Prof. P. Knochel. Since 2018, he 
has been professor of chemistry at 
the University of Namur, Belgium. 
His research interests are organo-

boron chemistry, main-group compounds, and organometal-
lic reactivity. He is actively involved in teaching, especially at 
the Master‘s level.

Prof. G. Berionni
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SYNFORM  What do you think about the modern role and 
prospects of organic synthesis?

Prof. G. Berionni Organic synthesis, or the art of activating 
and selectively transforming chemical bonds and making new 
molecules is, and always will be, fundamental for the develop-
ment of new chemical processes and materials. While reac-
tions mediated by transition-metal catalysts have been known 
for more than a century, the last two decades witnessed spec-
tacular developments in the emerging area of catalysis medi
ated by non-metallic species (organocatalysis, main-group 
catalysis, frustrated Lewis pairs catalysis, and photocatalysis).

Thus, I believe that in ten years from now, catalysts con
taining s- and p-block elements will transform the area of 
activation of strong covalent bonds (C–H, C–F, C–C) and will 
inspire chemists to develop more sustainable and cost-effec-
tive catalytic processes. Also, the quantification of the reac-
tivity of organic and organometallic compounds will guide 
the efforts of synthetic chemists and allow them to explore 
uncharted catalysis space more quickly by building structure–
reactivity models displaying predictive power.

SYNFORM  Could you tell us more about your group’s 
areas of research and your aims?

Prof. G. Berionni Our group’s research is principally fo-
cused on the synthesis and investigation of the reactivities of 
new carbon- and boron-containing acids, and of new sterically 
hindered bases (amines and phosphines). We subsequently 
combine these reactive entities to design transition-metal-
free catalysts for hydrogenation reactions, C–H bond boryl
ations, and other challenging reactions with small molecules. 
The main strategy for engineering new main-group catalysts, 
which we have been pursuing for a number of years, relies on 

the uses of polyaromatic linkers (anthracene, triptycene) to 
design unprecedented acid–base bifunctional catalysts with 
finely adjustable geometries and stereo-electronic properties 
(Scheme 1).

We are combining advanced theoretical quantum chemi-
cal approaches, spectroscopic methods (NMR, stopped-flow 
spectrophotometers) and synthetic methods (pressure reac-
tors, Schlenk lines, glove-boxes) throughout our work (Figure 
1). Our long-term goal is the reprogramming of the reac
tivity of main-group compounds (from group XIII and XIV) 
by exploiting original concepts (pyramidal Lewis acids, low-
reorganization-energy catalysts, curved linkers) towards new 
transition-metal-free catalyst development strategies.

A160

a) Frustrated Lewis pairs with bulky phosphatriptycenes

b) Unsymmetrical triarylboranes and amino-borane spirocycles
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c) Transition-metal-free CH borylation reactions of arenes
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Scheme 1 Selected examples of ongoing research projects

Figure 1 Researchers Arnaud Osi (left) and Jennifer Theissen (right) working at the organic chemistry labs and office meeting with 
Prof. Alain Krief (center). Photographs by Jean-Paul Dujeux.
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SYNFORM  What is your most important scientific achieve­
ment to date and why?

Prof. G. Berionni My most important scientific achieve-
ment is the recent synthesis of the long-sought 9-boratrip
tycene Lewis acid (Angew. Chem. Int. Ed. 2020, 59, 12402). 
This nonplanar boron Lewis acid (Figure 2a) has puzzled 
several research groups for half a century and is one of the 
most pyramidal boron Lewis acids ever generated in solution 
(Synlett 2020, 31, 1639–1648). We also successfully devel
oped a 9-bora-10-sulfonium-triptycene and a 9-bora-10-
phospha-triptycene (Figure 2b) with a dual reactivity mode 
from Lewis acid to superacid via protonation/deprotonation of 
the phosphorus atom (Angew. Chem. Int. Ed. 2019, 58, 16889). 

These achievements laid the foundation for one of our 
most productive research lines, and other unprecedented 
boron Lewis acids are currently being developed in our labor
atories. I hope that we and other research groups will exploit 
the potential of these new classes of boron Lewis superacids 
in catalysis in the future.

A161

Figure 2 Pyramidal boron Lewis acids recently generated in 
solution
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Borylated (hetero-)aromatics are fundamental building blocks 
in modern synthetic chemistry. They are used as coupling 
partners in Suzuki–Miyaura cross-coupling reactions, which 
account for ~30% of C–C bond formations in drug manufac-
ture,1 as well as many other processes, such as oxidation, 
Chan–Lam amination and fluorination.2

In general, C–B bonds in borylated (hetero-)aromatic com-
pounds are constructed using the corresponding (hetero-)
aryl halides via metalation–borylation or by transition-metal-
catalysed borylations, among which the Miyaura borylation3 
is the archetypical example (Figure 1). Both approaches re-
quire pre-functionalisation of the aromatic core in a separate 
synthetic step, which sometimes can be problematic.

“Transforming an aromatic C–H bond into a C–B bond has 
so far been the ‘playground’ for transition-metal-catalysed 
C–H activation, mostly with Ir or Rh catalysts.4 This approach 
has had a profound impact in synthetic chemistry and it is fre-
quently adopted both in academia and industry,” said Profes-
sor Daniele Leonori from the University of Manchester (UK).

“However, the generality and power of this approach are 
somewhat limited when azines are used as starting materi-
als,” explained Professor Leonori, who added: “This is because 
C–H activation responds mostly to steric factors (unless of 
course directing groups are present) and always leads to bo-
rylation far from the azine N-atom. Furthermore, borylated 
azines, where the boron is next to the N-atom, are unstable 
under the C–H activation conditions.5”

According to Professor Leonori, an additional challenge is 
that, while α-N borylated azines (e.g. C2-borylated pyridines) 
can be made by other approaches (e.g. azine halogenation fol-
lowed by Miyaura borylation), they are difficult to handle due 
to a very fast protodeboronation reaction. This synthetic chal-
lenge has been recognised in the literature and it is frequently 
referred to as the ‘2-pyridyl problem’.6

Professor Leonori said: “I learned about the difficulties in 
making and handling 2-borylated pyridines and other azines 
while I was working with Prof. Varinder Aggarwal in Bristol 
(UK). Indeed, one of the projects I contributed to was aimed at 
the development of novel transition-metal-free cross-coupl
ings between C2-lithiated pyridines and alkyl boronic esters.7 
This is also when I met Dr. Josep Llaveria, the industrial co-
author in our Nature paper, who was the main researcher 
working on the topic and subsequently moved to Janssen.”

Professor Leonori recalls that when he started his inde-
pendent career at Manchester (UK), he focused on radical 
chemistry where one of the most important and applied re-
activities is the addition of alkyl radicals to azines, which is 
now referred to as the ‘Minisci reaction’.8 “This process is a 
great way of forming C–C bonds at α-N positions on N-hetero
aromatics and, crucially, it targets C–H bonds sometimes 
difficult to reach with C–H activation,” explained Professor 
Leonori. He continued: “Furthermore, while our initial work 
was leading us towards the field of H-atom transfer (HAT),9 I 
became very familiar with the great work of Professor Brian 
Roberts (University College London, UK), who – between the 
1960s and the 1980s – reported many fundamental studies on 
the formation of boryl radicals from simple amine-boranes.10 
While these reactive intermediates have found limited appli-
cation in synthesis, we were very interested by the underly-
ing conclusions of Roberts’ studies demonstrating how boryl 
radicals are very nucleophilic species, more than a standard 
carbon radical. This immediately led us to recognize that if 
were able to engage them in Minisci-style reactivity, then we 
would have developed a novel approach to access borylated 
azines with C–H selectivity orthogonal to the one observed in 
transition-metal catalysis (Scheme 1). We were also very in-
terested by an additional aspect related to aromatic C–B bond 
formation under radical settings: while the addition of aryl 

A162

A Minisci Approach to C–H Borylation of Azines

Nature 2021, 595, 677–683

aryl nucleophiles aryl radicalsC–H borylation boryl radicals?
unprecedented

Ar
MgBr

B(OR)3 Ar B(pin)
B(pin)

Ar
[Ir] B(pin)

Ar •BR2

Miyaura borylation

Ar
[Pd] B(OH)2

Current strategies for arene borylation

Figure 1  Approaches towards aromatic borylation
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radicals to boron acceptors is well established, the other way 
around – the addition of boryl radicals to aromatics – is still 
very rare.”

Professor Leonori acknowledged that he was very fortun
ate to discuss this novel approach for azine borylation with Dr. 
Ji Hye Kim, while she was a Marie Curie Fellow in his group. 
“Dr. Kim immediately decided to tackle this challenge and 
very quickly showed me that it was feasible and that the reac-
tion products were remarkably stable crystalline solids (even 
suitable for X-ray analysis),” explained Professor Leonori. He 
continued: “These initial results made us believe this method 
could have the potential to address the two key problems dis-
cussed above: (1) it could provide a mechanistically distinct 
tactic for azine C–H borylation targeting currently elusive 
positions, while (2) giving stable materials for further appli-
cation in cross-coupling technology. We also became very ex-
cited about this reactivity upon examining the computational 
results obtained by Prof. Nadeem S. Sheikh, demonstrating 
how Minisci borylation is actually more facile than standard 
Minisci alkylation.”

To make sure that the group would address industrially 
relevant challenges, Professor Leonori reached out to Dr. Josep 
Llaveria at Janssen, informing him about the group’s initial 
results and discussing the possibility of starting a collabora-
tion on this topic. “This initial discussion led to a very fruitful 

collaboration; Dr. Llaveria was very involved in every aspect 
of the project and was also able to share with us many azine 
building blocks important to medicinal chemistry programs,” 
remarked Professor Leonori. He continued: “This allowed us 
to benchmark our Minisci-style borylation across a broad 
range of systems for which limited (if any) applications in C–H 
borylation existed.”

Upon evaluation of the synthetic versatility of the process, 
the group realised it was crucial to test the ability of these 
novel borylated materials in subsequent transformations. 
“This was a very exciting avenue for my group as the reac-
tivity of azine–amine–boranes had never been evaluated be-
fore; in fact, these compounds had never even been made,” 
said Professor Leonori. He remarked: “This part of the project 
proved a challenging task, but the combined efforts of Dr. Kim, 
together with final-year PhD student Timothée Constantin 
and postdoctoral researcher Dr. Marco Simonetti, who has 
a lot of experience wtih palladium catalysis, demonstrated 
how classical reactivity associated with aryl organoborons, 
like oxidation to phenol, Suzuki–Miyaura cross-coupling with 
aryl halides and Chan–Lam amination with amine and alcohol 
partners, could all be achieved. These proof-of-concept results 
provide support to the idea that these novel borylated mate-
rials might be considered viable coupling partners for future 
applications.”
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functionalization = oxidation; Suzuki–Miyaura cross-couplings; Chan–Lam cross-couplings
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Scheme 1  An overview of the Minisci-style azine borylation using boryl radicals and its orthogonality with respect to C–H activa
tion-based approaches
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“The results described in our Nature paper have effectively 
opened a novel research line for my research group and we 
are now actively pushing the boundaries of boryl radical reac-
tivity in different settings, as well as exploring the profile of 
the amine-borane products under transition-metal catalysis,” 
said Professor Leonori, who concluded: “As a final comment, 
I would like to express all my gratitude to my co-workers for 
their passionate and hard work on this project, during such a 
challenging time.”
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The transformation of small molecules, such as methane and 
ethane, into value-added chemicals is extremely attractive 
given their abundance in natural gas. The catalytic C–H func-
tionalization of methane remains a major challenge in the 
chemical industry and an active area of research. The groups 
of Professors Patrick J. Walsh and Eric J. Schelter at the Uni-
versity of Pennsylvania (Philadelphia, USA) have been actively 
investigating this important topic over the last few years.

“While many common catalysts for C–H activation em-
ploy low-abundance transition metals, a recent thrust in the 
field of catalysis has been to develop catalysts based on earth-
abundant elements, including certain lanthanides,” explained 
Professors Walsh and Schelter. “Within lanthanides, cerium 
stands out for its accessible Ce(III)/Ce(IV) redox couple that, 
together with its characteristic electronic structure, make it 
attractive for photoredox applications.” Prior efforts to devel
op cerium photoredox catalysts by the Costanzo labs and the 
Schelter labs demonstrated activation of benzylic C–H bonds 
of toluene. “In a recent breakthrough, Prof. Zhiwei Zuo (now 
at Shanghai Institute of Organic Chemistry, P. R. of China) 
reported a cerium photocatalyst capable of functionalizing 
methane, ethane, and higher alkanes (Science 2018, 361, 668–
672). This discovery highlighted the broad utility of cerium 
photocatalysts and their potential applications to cleave un-
activated C–H bonds,” said Professor Schelter. He continued: 
“To rationalize the observed reactivity and explain a per
ceived beneficial impact of certain alcohols on the reactivity 
of the Ce-photoredox catalyst, Zuo’s team proposed the inter- 
mediacy of a key cerium alkoxide, [nBu4N]2[CeIVCl5(OR)],  
R = -CH2CCl3, -CH3, -CH2CF3. This species was believed to 
generate CeIII and alkoxy radicals (•OR) upon photolysis. Based 
on the proposed CeIV–OR photochemistry, Zuo has expand
ed Ce-photoredox catalysis to a wide range of alcohols and 
ketones, observing reactions attributed to alkoxy radicals, 
including beta-scission, intermolecular HAT to alkoxy radi-
cals, and intramolecular 1,5-HAT to alkoxy radicals. From the 
perspective of inorganic chemistry, Zuo’s proposed alkoxides 
raised questions in our minds about catalyst speciation and 
the spectroscopic similarity between the proposed ‘cerium 
alkoxide’ and [NEt4]2[CeCl6]. Zuo’s original paper was an im-
pressive achievement in photocatalytic methane activation, 
but some of the details of the spectroscopy and mechanism 

piqued our interest, based on our work with a related catalyst. 
This observation, combined with our interests in lanthanide 
photochemistry, inspired us to investigate the proposed me-
chanism of the Ce-catalyzed functionalization of alkanes.”

The hunt for the proposed cerium alkoxide was initiated 
with a three-pronged approach: independent synthesis, 
spectroscopic studies, and kinetics experiments. Professor 
Schelter explained: “Qiaomu Yang, the lead student author 
on the manuscript, first independently synthesized Zuo’s pro-
posed alkoxide intermediate. Metathesis of NaOCH2CCl3 with 
CeCl6

2– led to the isolation of [CeCl5(OCH2CCl3)]2–, which was 
characterized spectroscopically and by X-ray diffraction. The 
UV-vis spectrum of this compound was different than that 
of CeCl6

2– and different from the spectrum reported by Zuo, 
fueling our suspicions that cerium alkoxides were not invol-
ved in the chemistry.” With an authentic sample of the pro-
posed key intermediate as a reference, spectroscopic studies 
of stoichiometric and catalytic reactions were undertaken. 
Zuo’s proposed catalyst, [CeCl5(OCH2CCl3)]2–, was found to be 
unstable to the reaction conditions, rapidly decomposing to 
CeCl6

2– upon irradiation. Moreover, the Philadelphia-based 
researchers found that addition of HOCH2CCl3 (up to 600 
equiv) to CeCl6

2– in the absence of light or under irradiation 
under the conditions of the C–H functionalization induced no 
changes in the UV-vis spectrum from CeCl6

2–, indicating that 
[CeCl5(OCH2CCl3)]2– was not formed under these conditions.

“We next examined the kinetics of the C–H functional
ization under catalytic conditions,” said Professor Schelter. He 
remarked: “Comparison of rates with CeCl6

2– in the presence 
and absence of varying equivalents of HOCH2CCl3 indicated 
that alcohol had no impact on the rates of the photoredox 
C–H functionalization, supporting the hypothesis that it was 
not involved in the functionalization (Figure 1A, 1B). Kinetic 
isotope effect experiments using cyclohexane and cyclohex
ane-d12 with CeCl6

2– in the presence and absence of HOCH2CCl3 
were identical (kH/kD = 2.0–2.1), suggesting that both reactions 
proceeded through a common intermediate. Furthermore, 
positional selectivity experiments with n-hexane with and 
without alcohol demonstrated that the catalyst in both re-
actions gave identical selectivity of C1:C2:C3 of 1.0:1.8:1.8, 
again pointing to the identity of the catalyst in these two re-
actions as being the same: CeCl6

2– (Figure 1C).”
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Photocatalytic C–H Activation and the Subtle Role of Chlorine 
Radical Complexation in Reactivity

Science 2021, 372, 847–852

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.

https://doi.org/10.1126/science.abd8408
https://doi.org/10.1126/science.aat9750
https://doi.org/10.1126/science.aat9750


© 2021. Thieme. All rights reserved. Synform 2021/10, A166–A169 • Published online: September 17, 2021 • DOI: 10.1055/s-0040-1720537

Literature CoverageSynform

Based on these studies, the authors of this Science paper 
proposed a revised mechanism (Figure 1B). “Photo-excitation 
of CeCl6

2– results in ligand-to-metal charge transfer (LMCT), 
leading to dissociation of •Cl and formation of the reduced 
CeIII complex,” said Professor Schelter, who continued: “The 
chlorine radical undergoes HAT with the alkane to generate 
the radical intermediate R• and HCl. R• is trapped by the diazo 
complex to give an N-centered radical. This intermediate 
undergoes reduction by CeIII and protonation to generate the 
product hydrazine and close the catalytic cycle with forma
tion of CeCl6

2–.”
Extensive studies in the presence and absence of alcohol 

revealed one instance where either methanol or HOCH2CCl3 
had a beneficial impact on the C–H functionalization and that 
was with methane. “In this case, rather than the formation of 
alkoxy radicals, it is postulated that hydrogen-bonding of the 

alcohols to the methyl radical stabilizes this reactive interme-
diate,” explained Professor Schelter.

One of the pillars of Zuo’s alkoxy radical mechanism was 
the ‘alkoxy radical-like’ chemistry that was observed, which 
included what appeared to be alkoxy radical trapping pro-
ducts. The team envisioned that understanding this behavior 
would have implications beyond applications of the Ce photo-
redox chemistry and be of value to the larger chemistry com-
munity. “The missing piece of the puzzle was if alkoxy radicals 
were not involved, what was responsible for the alkoxy radi-
cal-like reactivity?” said co-corresponding author Professor 
Patrick Walsh.

Based on prior observations in the literature, it was known 
that chlorine radicals can interact with Lewis basic sites on 
molecules, and that this interaction can delocalize the chlor
ine radical character to proximal atoms. Computational and 

A167

Figure 1  Highlights of the paper
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experimental studies were undertaken by Qiaomu Yang to 
measure the impact of alcohols and arenes on C–H cleavage 
selectivity. “Experimentally, 2,3-dimethylbutane, which has 
two types of C–H bonds, was used as a selectivity probe,” 
said Professor Schelter. He continued: “With catalytic CeCl6

2–, 
HOCH2CCl3 had no impact on the selectivity, whereas increas
ing concentrations of t-BuOH resulted in improved selectivity 
for the weaker methyne C–H bond. This change in selectivity 
toward the more reactive C–H bond could also be engender
ed by arenes, including benzene and t-BuPh (Figure 1D). As 
shown in Figure 1E, the chlorine radical interacts with the 
pi-cloud of the arenes, as established in the DFT study out
lined in the manuscript. Taken together, these results indicate 
that adducts with the chlorine radical and methanol result in 
radical character delocalization on the oxygen of the alcohol. 
It is proposed that this behavior is responsible for the alkoxy 
radical-like reactivity observed by the Zuo team.”

“The identification of species on the catalytic cycle and the 
mapping of reaction mechanisms is important for understand
ing the chemistry and to position the research communi-
ty to design the next generation of catalysts,” said Professor 
Schelter, who concluded: “We anticipate that the high reactiv
ity of chlorine, and the ability to generate Cl• through LMCT 
of M–Cl bonds will continue to be important in the conver-
sion of light hydrocarbons such as methane into value-added 
chemicals and fuels.”
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behavior and ligand design, as well as the understanding of the 
electronic and magnetic properties of chemical substances.
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Methylation of organic molecules is increasingly emerging 
as a very useful structural modification and biological pro-
filing strategy in the rational design of bioactive compounds 
and drugs. In fact, a relatively subtle structural modification 
stemming from the introduction of a methyl group has the 
potential to strongly alter both pharmaco-dynamic and phar-
maco-kinetic profiles of a drug candidate, as a consequence 
of changes in its stereo-electronic properties. According to 
Professor Shannon Stahl, from the University of Wisconsin-
Madison (USA), methylated building blocks are a staple of 
medicinal chemistry library designs. “For example,” explained 
Professor Stahl, “when an amine building-block is chosen to 
be included in a screening library, it is likely that various me-
thylated analogues of that building-block will also be evalu-
ated, if they are commercially available. The introduction of 
a methyl group can significantly affect the properties of the 
resulting drug lead. There are cases where the installation of 
a methyl group results in thousand-fold improvements in po-
tency or results in defining drops in toxicity.” Despite the im-
portance of testing the outcome of introducing a methyl group 
at a C–H site, synthetic options are limited. Conventionally, 
‘magic methyl’ effects are uncovered by screening methyl
ated building blocks or by rerouting syntheses to incorporate 
a methyl group at an early stage. State-of-the-art protocols for 
C–H methylation are still encumbered by the use of directing 
groups or unsafe high-reactivity reagents. “My student Aris 
Vasilopoulos conceived a general C–H methylation strategy 
that features a ‘radical relay’ approach based on Kharasch–
Sosnovsky C–H functionalization methods. These methods 
use a transition-metal catalyst and a peroxide-based oxidant,” 
noted Professor Stahl.

Professor Stahl and Dr. Vasilopoulos, who led the experi-
mental studies, began studying Kharasch–Sosnovsky-type re-
actions in the context of Cu-catalyzed benzylic C–H arylation 
using di-tert-butyl peroxide with aryl boronate esters. Aris ex-
plained, “These studies revealed a means to convert C–H into 
C–C bonds, but also highlighted a problem with C–H substrate 
conversion.” He continued: “Under the 90 °C reaction tempe-
rature, low conversion of C–H substrate was observed, which 
led to solvent-level use of the C–H substrate, which would not 
be amenable to application on valuable drug-like compounds. 
We postulated that the tert-butoxyl radical formed from per-

oxide activation was competitively undergoing β-scission to 
form methyl radical and acetone, that was preventing efficient 
C–H substrate activation by hydrogen-atom transfer (HAT).” 
Literature studies from the 1960s by Wagner supported this 
hypothesis and revealed that HAT is more favorable at reduced 
temperatures. Other studies revealed that the peroxide could 
be activated at these reduced temperatures by using a pho-
tosensitizer with light. Professor Stahl noted that if the C–H 
substrate could be activated with limiting C–H substrate in the 
presence of a transition metal that can methylate the resulting 
intermediate, a new methylation reaction could be identified. 
This set of hypotheses set the stage for high-throughput expe-
rimentation efforts, led by Dr. Vasilopoulos at Merck’s labora-
tories in Kenilworth, NJ (USA).

At Merck, Dr. Vasilopoulos screened a wide range of reac-
tion parameters such as metal salts, ligands, photocatalysts, 
light sources, peroxides, acid and base additives, methyl sour-
ces, and solvents in 96-well arrays in search of an initial hit. 
In the first two-week Merck visit, nearly 1000 reactions were 
tested, but almost all of them showed no conversion of star-
ting material. Dr. Vasilopoulos explained: “The reaction con-
ditions that did show conversion either had 1–10% conversion 
to a possible methylated product or had conversion to a C–H 
oxygenation product (usually observed with tert-butyl hydro-
peroxide). One photocatalyst that showed 1–10% conversion 
of C–H substrate in these tests was Ir[dF(CF3)ppy]2

tBubpyPF6 
and, coincidentally, I found an unopened vial of 100 mg of this 
compound underneath my bench at UW-Madison.” Testing 
this photocatalyst under relevant conditions with di-tert-
butyl peroxide at UW-Madison led to a confirmed hit for 10% 
yield of methylation of ethylbenzene to cumene to be identi-
fied, with >50% conversion of the starting material. This reac-
tion hit was then optimized for one substrate at Merck, using 
over ~2000 reactions, and then optimized in parallel for 8–12 
other drug-like substrates, using over another 1000 reactions, 
to arrive near the final conditions published in the paper. Pro-
fessor Stahl elaborated: “Mechanistic studies were then con-
ducted to untangle the role of each reaction component as it 
relates to either HAT, β-scission, and/or C–C bond formation.”

“The C–H activation reactivity allowed by photoactivation 
of di-tert-butyl peroxide is remarkably robust and tolerant of 
diverse functionality,” said Professor Stahl, who continued: 
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C(sp3)–H Methylation Enabled by Peroxide Photosensitization and 
Ni-Mediated Radical Coupling

Science 2021, 372, 398–403
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“It is possible that this platform can be used to enable other 
‘radical relay’ C–H functionalization reactions, such as other 
alkylation reactions.” The identified methylation reaction 
conditions have been efficacious for methylation of several 
lead compounds. “Hopefully, it is only a matter of time before 
the reaction leads to identification of a ‘magic methyl’ effect in 
a bona fide drug lead,” noted Professor Stahl.

Professor Stahl concluded: “Ultimately, this reaction 
offers a practical one-step non-directed late-stage C(sp3)–H 
methylation reaction that uses all commercially available 
reagents. These features offer considerable advantages over 
other existing methods and should facilitate uptake by other 
researchers.”
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Scheme 1 The reported methylation and its key reaction features
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