Synlett 2021; 32(20): 2080-2084
DOI: 10.1055/s-0040-1720889
letter

1,4,2-Dioxazol-5-ones as Isocyanate Equivalents: An Efficient Synthesis of 2-Quinolinones via β-Keto Amides

a   Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej, Bavla Highway, Ahmedabad, Gujarat 382213, India
b   Department of Chemistry, Faculty of Science, The Madhav University, Pindwara (Sirohi)-307026, Rajasthan, India
,
Nirali Parmar
a   Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej, Bavla Highway, Ahmedabad, Gujarat 382213, India
,
Jigar Y Soni
b   Department of Chemistry, Faculty of Science, The Madhav University, Pindwara (Sirohi)-307026, Rajasthan, India
,
Sharadsrikar Kotturi
a   Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej, Bavla Highway, Ahmedabad, Gujarat 382213, India
,
Ramakrishna Guduru
a   Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej, Bavla Highway, Ahmedabad, Gujarat 382213, India
› Author Affiliations
Piramal Pharma Solutions, India.


Abstract

Under thermal conditions, 1,4,2-dioxazol-5-ones are known to undergo decarboxylation followed by Lossen’s rearrangement to yield isocyanates. Described herein is the in situ trapping of the resulting isocyanates with carbon nucleophiles to synthesize β-keto amides. Furthermore, a general and mild method for the conversion of the resulting β-keto amides into quinolin-2-ones is reported.

Supporting Information



Publication History

Received: 08 June 2021

Accepted after revision: 08 September 2021

Article published online:
28 September 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Forbis RM, Rinehart KL. Jr. J. Am. Chem. Soc. 1973; 95: 5003
    • 1b Hassanin HM, El-Edfawy SM. Heterocycles 2012; 85: 2421
    • 2a Claassen G, Brin E, Crogan-Grundy C, Vaillancourt MT, Zhang HZ, Cai SX, Drewe J, Tseng B, Kasibhatla S. Cancer Lett. 2009; 274: 243
    • 2b Mabire DJ.-P, Guillemont JE. G, Van Dun JA. J, Somers MV. F, Wouters WB. L.
    • 2c Venet MG, Angibaud PR, Muller P, Sanz GC. WO 9721701, 1997
    • 2d Ni Z.-J, Barsanti P, Brammeier N, Diebes A, Poon DJ, Ng S, Pecchi S, Pfister K, Renhowe PA, Ramurthy S, Wagman AS, Bussiere DE, Le V, Zhou Y, Jansen JM, Ma S, Gesner TG. Bioorg. Med. Chem. Lett. 2006; 16: 3121
    • 3a Richter S, Parolin C, Palumbo M, Palù G. Antiviral properties of quinolone-based drugs. Curr Drug Targets Infect Disord. 2004 4(2), 11-6. DOI: DOI: 10.2174/1568005043340920. PMID: 15180459.
    • 3b Senerovic L., Opsenica D., Moric I., Aleksic I., Spasić M., Vasiljevic B. (2019) Quinolines and Quinolones as Antibacterial, Antifungal, Anti-virulence, Antiviral and Anti-parasitic Agents. In: Donelli G. (eds) Advances in Microbiology, Infectious Diseases and Public Health. Advances in Experimental Medicine and Biology, vol 1282. Springer, Cham. https://doi.org/10.1007/5584_2019_428.
    • 4a Bonnefous C, Payne JE, Roppe J, Zhuang H, Chen XH, Symons KT, Nguyen PM, Sablad M, Rozenkrants N, Zhang Y, Wang L, Severance D, Walsh JP, Yazdani N, Shiau AK, Noble SA, Rix P, Rao TS, Hassig CA, Smith ND. J. Med. Chem. 2009; 52: 3047
    • 4b Kraus JM, Verlinde CL. M. J, Karimi M, Lepesheva GI, Gelb MH, Buckner FS. J. Med. Chem. 2009; 52: 1639
    • 4c Shiraiwa M, Ota S, Takefuchi K, Uchida H, Saegusa M, Mitsubori T, Yoshizawa M. JP 2003146972, 2003 ; Chem. Abstr. 2003, 138, 401612
    • 4d Carling RW, Leeson PD, Moore KW, Smith JD, Moyes CR, Mawer IM, Thomas S, Chan T, Baker R, Foster AC, Grimwood S, Kemp JA, Marshall GR, Tricklebank MD, Saywell KL. J. Med. Chem. 1993; 36: 3397
    • 4e Hewawasam P, Fan W, Ding M, Flint K, Cook D, Goggins GD, Myers RA, Gribkoff VK, Boissard CG, Dworetzky SI, Starrett JE. Jr, Lodge NJ. J. Med. Chem. 2003; 46: 2819
    • 4f Glasnov TN, Stadlbauer W, Kappe CO. J. Org. Chem. 2005; 70: 3864
    • 5a Domínguez-Fernández F, López-Sanz J, Pérez-Mayoral E, Bek D, Martín-Aranda RM, López-Peinado AJ, Čejka J. ChemCatChem 2009; 1: 241 ; and references cited therein
    • 5b Marull M, Lefebvre O, Schlosser M. Eur. J. Org. Chem. 2004; 54 ; and references cited therein
    • 5c Reddy MS, Thirupathi N, Babu MH. Eur. J. Org. Chem. 2012; 5803
    • 5d Gao W.-T, Hou W.-D, Zheng M.-R, Tang L.-J. Synth. Commun. 2010; 40: 732
    • 5e Yasui Y, Kakinokihara I, Takeda H, Takemoto Y. Synthesis 2009; 3989
    • 5f Huang C.-C, Chang N.-C. Org. Lett. 2008; 10: 673
    • 5g Angibaud PR, Venet MG, Filliers W, Broeckx R, Ligny YA, Muller P, Poncelet VS, End DW. Eur. J. Org. Chem. 2004; 479
    • 6a Iwai T, Fujihara T, Terao J, Tsuji Y. J. Am. Chem. Soc. 2010; 132: 9602
    • 6b Kadnikov DV, Larock RC. J. Org. Chem. 2004; 69: 6772
    • 6c Kadnikov DV, Larock RC. J. Organomet. Chem. 2003; 687: 425
    • 6d Cortese NA, Ziegler CB. Jr, Hrnjez BJ, Heck RF. J. Org. Chem. 1978; 43: 2952
    • 6e Harishkumar HN, Hulikal VK, Mahadevan KM. Synth. Commun. 2010; 40: 3281
    • 6f Tadd AC, Matsuno A, Fielding M, Willis MC. Org. Lett. 2009; 11: 583
    • 6g Wasa M, Yu J.-Q. J. Am. Chem. Soc. 2008; 130: 14058
    • 6h Inamoto K, Kawasaki J, Hiroya K, Kondo Y, Doi T. Chem. Commun. 2012; 48: 4332
    • 6i Shibuya T, Shibata Y, Noguchi K, Tanaka K. Angew. Chem. Int. Ed. 2012; 50: 3963
    • 6j Minville J, Poulin J, Dufresne C, Sturino CF. Tetrahedron Lett. 2008; 49: 3677
    • 6k Liu Z, Shi C, Chen Y. Synlett 2008; 1734
    • 6l Battistuzzi G, Bernini R, Cacchi S, De Salve I, Fabrizi G. Adv. Synth. Catal. 2007; 349: 297
    • 6m Inamoto K, Saito T, Hiroya K, Doi T. J. Org. Chem. 2010; 75: 3900
    • 6n Ferguson J, Zeng F, Alwis N, Alper H. Org. Lett. 2013; 15: 1998
    • 6o Zhang Z, Liao L.-L, Yan S.-S, Wang L, He Y.-Q, Ye J.-H, Li J, Zhi Y.-G, Yu D.-G. Angew. Chem. Int. Ed. 2016; 55: 7068
    • 7a Trautwein AW, Süßmuth RD, Jung G. Bioorg. Med. Chem. Lett. 1998; 8: 2381
    • 7b Ketcha DM, Wilson LJ, Portlock DE. Tetrahedron Lett. 2000; 41: 6253
    • 7c Abou-Elenien GM, El-Anadouli BE, Baraka RM. J. Chem. Soc., Perkin Trans. 2 1991; 1377
    • 7d Sadanandam YS, Shetty MM, Diwan PV. Eur. J. Med. Chem. 1992; 27: 87
    • 7e Kappe CO. Acc. Chem. Res. 2000; 33: 879
    • 7f Saalfrank RW, Hörner B, Reck S, Nachtrab J, Peters E.-M, Peters K, von Schnering HG. Z. Naturforsch., B 1996; 51: 1084
    • 7g Zaleska B, Lis S. Synthesis 2001; 811
    • 8a Halloran N, James JP, Downey CA, Malley P, Duff T, Bertrand S. Heterocycles 2008; 75: 2681
    • 8b Suri O, Satti P, Suri KA. Synth. Commun. 2000; 30: 3709
    • 8c Witzeman JS, Nottingham WD. J. Org. Chem. 1991; 56: 1713
    • 8d Chakraborty K, Devakumar C. J. Agric. Food Chem. 2005; 53: 5959
    • 8e Ponde DE, Deshpande VH, Bulbule VJ, Sudalai A, Gajare AS. J. Org. Chem. 1998; 63: 1058
    • 8f Štefane B, Polanc S. Tetrahedron 2007; 63: 10902
    • 8g Presset M, Coquerel Y, Rodriguez J. J. Org. Chem. 2009; 74: 415
    • 8h Dekhane M, Douglas KT, Gilbert P. Tetrahedron Lett. 1996; 37: 1883
    • 8i Zhang Z, Liu Y, Ling L, Li Y, Dong Y, Gong M, Zhao X, Zhang Y, Wang J. Am. Chem. Soc. 2011; 133: 4330
    • 8j Ramanjulu JM, DeMartino Y. Lan, Marquis R. Org. Lett. 2010; 12: 2270
    • 8k Ancizu S, Moreno E, Solano B, Villar R, Burguete A, Torres E, Pérez-Silanes S, Aldana I, Monge A. Bioorg. Med. Chem. 2010; 18: 2713
    • 8l Huggins MT, Barber PS, Florian D, Howton W. Synth. Commun. 2008; 38: 4226
    • 8m Jaggavarapu SR, Kamalakaran AS, Jalli VP, Gangisetty SK, Ganesh MR, Gaddamanugu G. J. Chem. Sci. (Berlin, Ger.) 2014; 126: 187
    • 8n Shong PD, Cipollina JA, Lowmasted NK. J. Org. Chem. 1988; 53: 1356
    • 8o Sung K, Wu S.-Y. Synth. Commun. 2001; 31: 3069
    • 8p Sato M, Ogasawara H, Komatsu S, Kato T. Chem. Pharm. Bull. 1984; 32: 3848
    • 8q Sørensen US, Falch E, Krogsgaard-Larsen P. J. Org. Chem. 2000; 65: 1003
    • 8r Hendi SB, Hendi MS, Wolfe JF. Synth. Commun. 1987; 17: 13
    • 8s Keck GE, Boden PE, Mabury SA. J. Org. Chem. 1985; 50: 710
    • 8t Kuzma PC, Brown LE, Harris TM. J. Org. Chem. 1984; 49: 2015
    • 8u Chen YP, Sieburth SMcN. Synthesis 2002; 2191
    • 8v Gotor V, Liz R, Testera AM. Tetrahedron 2004; 60: 607
  • 9 Chakraborty A, Majumdar S, Maiti DK. Tetrahedron Lett. 2016; 57: 3298 ; and references cited therein
    • 10a Dubé P, Nathel NF, Vetelino M, Couturier M, Aboussafy CL, Pichette S, Jorgensen ML, Hardink M. Org. Lett. 2009; 11: 5622
    • 10b Zhao J, Gimi R, Katti S, Reardon M, Nivorozhkin V, Konowicz P, Lee E, Sole L, Green G, Siegel CS. Org. Process Res. Dev. 2015; 19: 576
  • 11 Wang J, Zha S, Chen K, Zhang F, Song C, Zhu J. Org. Lett. 2016; 18: 2062
  • 12 3-(4-bromophenyl)-3-oxo-N-phenylpropanamide t-BuOK (2.0 mmol) was added in one portion to a stirred solution of 4-bromo acetophenone (2a, 1 mmol), and the 1,4,2-dioxazol-5-one 1a (1.2 mmol) in toluene (2 mL) at r.t., and the mixture was stirred at 110 °C for 1–2 h until the reaction as complete (TLC). The mixture was then cooled to r.t. and H2O (5 mL) was added. The mixture was extracted with EtOAc (3 × 10 mL) and dried (Na2SO4), and the solvent was removed under reduced pressure. The residue was purified by chromatography [silica gel, hexane–EtOAc (8:2)] to give an off-white solid; yield: 120 mg (62%). 1H NMR (400 MHz, CDCl3) δ = 9.13 (br s, 1 H), 7.93 (d, J = 8.4 Hz, 2 H), 7.69 (d, J = 8.3 Hz, 2 H), 7.58 (d, J = 7.9 Hz, 2 H), 7.37 (m, 2 H), 7.15 (t, J = 7.5 Hz, 1 H), 4.10 (s, 2 H). 13C NMR (100 MHz, CDCl3) δ = 195.2, 163.6, 137.5, 134.7, 132.3, 130.1, 129.0, 127.4, 125.1, 120.2, 45.9; ESI-MS: m/z [M+2H]+ for C15H12BrNO2 = 320.02; found 320.05. 4-(4-Bromophenyl)quinolin-2(1H)-one (4a1); Typical Procedure A reaction tube equipped with a stirrer bar was charged with 3-(4-bromophenyl)-3-oxo-N-phenylpropanamide (3aa; 0.314 mmol) and PPA(0.159g, 0.471 mmol). The tube was sealed, and the mixture was stirred at 100 °C (oil bath) under N2 for 20–40 min, then cooled to r.t. H2O (2 mL) was added, and the mixture was extracted with EtOAc (3 × 5 mL) and the combined organic layers were dried (Na2SO4). The solvent was removed under reduced pressure, and the residue was purified by chromatography [silica gel, hexane–EtOAc (6:4)] to give Light yellow solid; yield: 65 mg (58.02%); mp 264-265 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 11.94 (s, 1 H), 7.75 (d, J = 8.1 Hz, 2 H), 7.53 (t, J = 14.7, 11.2 Hz, 1 H), 7.48–7.39 (m, 3 H), 7.42–7.32 (m, 1 H), 7.15 (t, J = 7.6 Hz, 1 H), 6.42 (s, 1 H). 13C NMR (100 MHz, DMSO-d 6): δ = 161.67, 150.76, 139.72, 136.29, 132.13, 131.35, 131.19, 126.44, 122.74, 122.48, 121.85, 118.50, 116.30. HRMS-ESI: m/z [M +2H]+ calcd for C15H12BrNO; 300.9925; found: 300.9920.