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Introduction

The comprehensive understanding of severe acute respiratory
syndrome-coronavirus-2 (SARS-CoV-2) pathogenesis, respon-
sible for the novel coronavirus disease 2019 (COVID-19)

outbreak, is not only important for its management but will
also take cognizance of the other members of the coronavirus
family that have the potential of such outbreaks in future.
Acute respiratory distress syndrome (ARDS), as a consequence
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Abstract Severe novel corona virus disease 2019 (COVID-19) infection is associated with a consider-
able activation of coagulation pathways, endothelial damage, and subsequent thrombotic
microvascular injuries. These consistent observations may have serious implications for the
treatment and management of this highly pathogenic disease. As a consequence, the
anticoagulant therapeutic strategies, such as low molecular weight heparin, have shown
some encouraging results. Cytokine burst leading to sepsis which is one of the primary
reasons for acute respiratory distress syndrome (ARDS) drive that could be worsened with
the accumulation of coagulation factors in the lungs of COVID-19 patients. However, the
obscurityof this syndromeremainsahurdle inmakingdecisive treatmentchoices. Therefore,
an attempt to characterize shared biological mechanisms between ARDS and thrombosis
using comprehensive transcriptomics meta-analysis is made. We conducted an integrated
gene expressionmeta-analysis of two independently publicly available datasets of ARDS and
venous thromboembolism (VTE). Datasets GSE76293 and GSE19151 derived from National
Centre for Biotechnology Information–GeneExpressionOmnibus (NCBI-GEO)databasewere
used for ARDS and VTE, respectively. Integrative meta-analysis of expression data (INMEX)
tool preprocessed the datasets and effect size combination with random effect modeling
was used for obtaining differentially expressed genes (DEGs). Network construction was
done for hub genes and pathway enrichment analysis. Ourmeta-analysis identified a total of
1,878 significant DEGs among the datasets, which when subjected to enrichment analysis
suggested inflammation–coagulation–hypoxemia convolutions in COVID-19 pathogenesis.
The top hub genes of our study such as tumor protein 53 (TP53), lysine acetyltransferase 2B
(KAT2B), DExH-box helicase 9 (DHX9), REL-associated protein (RELA), RING-box protein 1
(RBX1), and proteasome 20S subunit beta 2 (PSMB2) gave insights into the genes known to
be participating in the host–virus interactions that could pave the way to understand the
various strategies deployed by the virus to improve its replication and spreading.
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of acute inflammation, often leading to a reduction of lung
function is being widely responsible for the critical illness in
the SARS-CoV-2 infected patient.1 Endothelial damage, activa-
tion of coagulation pathways and subsequent generalized
thrombotic microvascular injuries could also be observed in
the critical COVID-19 patients.2,3 This abnormality in blood
coagulation proteins increases the propensities of venous
thromboembolism (VTE), a secondary complication to several
diseases including cancers and viral infections such as SARS-
CoV-2.4 Consistent observations of ARDS associated with
thrombosis in severe COVID-19 patients may have serious
implications for treatment and management. As a conse-
quence, the therapeutic strategies targeting these abnormal
levels of cytokines and coagulant factors have shown some
encouraging results. Low molecular weight heparin (LMWH)
or enoxaparin that inhibits activated factor X is now widely
recommended as an early anticoagulation therapy unless
there is contraindication.3,5 Its anti-inflammatory properties
furthermake LMWH, a preferred choice inmitigating cytokine
storms in COVID-19 patients.3,5 Cytokine burst leading to
sepsis is one of the primary reasons for the ARDS drive that
could be worsened with the accumulation of coagulation
factors in the lungs.6 However, the obscurity of ARDS remains
a hurdle in making decisive treatment choices for patients.
Normally, ARDS is a build-up of noncardiogenic pulmonary
edema resulting inhypoxemia in thevital organs of thebody. It
is a life-threatening condition that is always associated with a
heterogeneous mix of other existing health problems such as
sepsis.7 Though ARDS in COVID-19 is received with a debate
among the scientific community,8,9 still its occurrence along
with the endothelial injury in the severe COVID-19 patients
cannot be overlooked.10 Perhaps, the endothelial injury as a
result of SARS-CoV-2 infection might have a major role in the
development of VTE, as well as ARDS.11 Thus, it becomes
pertinent to ascertain the intrinsic factors responsible for
ARDS and thrombotic events in the case of COVID-19 as it is
clear that these complications coexist relatedly. This study,
therefore, tries to understand the link between ARDS and
thrombosis through the revelation of shared biological mech-
anisms. An attempt is made to comprehend the shared tran-
scriptomics signatures among the datasets derived fromARDS
andVTE throughnetwork-basedmeta-analysis. Thiswill aid in
delineating the deregulated pathways driving COVID-19
pathophysiology that could further help in deriving standard
laboratory tests and targeted therapeutic interventions.

Materials and Methods

Curation and Identification of Suitable Gene
Expression Datasets for Meta-analysis
We conducted an integrated gene expressionmeta-analysis of
the two independently and publicly available datasets for
ARDS and VTE. The National Centre for Biotechnology Infor-
mation–Gene Expression Omnibus (NCBI-GEO) database
(http://www.ncbi.nlm.nih.gov/geo/) and European Molecular
Biology Laboratory–European Bioinformatics Institute Array
Express database (http://www.ebi.ac.uk/arrayexpress/) were
mined for microarray-based studies. The following keywords

and their combinations were used: “Thrombosis,” “venous
thromboembolism,” “ARDS,” “microarray,” “gene expression
dataset.” We extracted the following information from each
identified study: GEO accession number, sample type, plat-
form, number of controls, and cases along with references.
Inclusion criteria were set and strictly followed for dataset
selection. The criteriawere human case/control study, sample
source, platform, and comparable conditions. A Flow diagram
depicting the microarray meta-analysis as a selection process
of eligible microarray datasets is represented in ►Fig. 1.

Preprocessing Individual Datasets
Aweb interface for integrativemeta-analysis, integrativemeta-
analysis of expression data (INMEX; http://www.networkana-
lyst.ca/faces/home.xhtml) tool was used for preprocessing of
datasets using log2-transformation with quantile autoscal-
ing.12 The data were annotated after converting the gene and
probe IDs to the corresponding Entrez IDs. Before performing
the meta-analysis, the batch effect correction option was
applied to reduce the potential study-specific batch effects
heterogeneity using the combat procedure of the INMEX
tool. The batch effect removal is needed for the integrative
analysis and reducing contradictory factors due to nonbiologi-
cal variation. Principal component analysis (PCA) was per-
formed to visualize the sample clustering patterns before and
after applying the ComBat procedure.13 The ComBat proce-
dures stabilize the expression ratios of genes with too high or
too low ratios using the Empirical Bayes methods and stabilize
the individual gene variances by shrinking variances across all
the other genes.

Identification of Shared Differentially Expressed Genes
Differential expression analysis for each dataset was per-
formed with INMEX independently using adjusted p< 0.05,
based on the false discovery rate using the Benjamini–
Hochberg procedure and moderated t-test based on the
Limma algorithm.14 For the meta-analysis, data integrity
was checked to confirm the consistency and completeness
of class labels across all the datasets. The differential expres-
sion meta-analysis across the diseases and healthy controls
was performed by the random effects model (REM) based on
combining the effect sizes (ESs) or changes of gene expres-
sion from the different studies and obtaining an overallmean
with a significance level of p< 0.05.15 The REM was chosen
over the Fixed Effect Model to avoid significant cross-study
heterogeneities based on the Cochran’s Q-test.16

Pathway Analysis Using Kobas3.0
To further explore the biological functions of the shared
DEGs of ARDS and VTE, the significant pathway analysis was
performed by using the online web site of Kobas3.0 (http://
kobas.cbi.pku.edu.cn/kobas3/?t=1) under the function of
“Gene list Enrichment” including gene ontology, the Kyoto
Encyclopedia of Genes and Genomes (KEGG), Reactome,
PANTHER, and fewother pathway analyses.17 It uses a hyper-
geometric test/Fisher’s exact test as a statistical test method
with Benjamini and Hochberg as false discovery rate (FDR)
correction method.
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Network-Based Hub Gene Analysis and Visual Analytics
Network-basedmeta-analysis using NetworkAnalyst/INMEX
was implemented to generate a protein–protein interaction
(PPI) network. A complete list of DEGs was uploaded into the
web-based server of NetworkAnalyst. However, the network
construction was restricted to contain only the original seed
proteins by selecting the zero-order interactors to avoid
“hairball effect” and to allow the proper visualization of
the interaction network. The obtained result was fed into the
Cytoscape tool, which was used for the hub gene analysis
showing detailed information on nodes within the current
network, including degree, betweenness centrality, and
expression.18 The degree was defined as the number of
connections to the other nodes. The betweenness centrality
was the number of shortest paths going through a node.19

Functional Analysis of Shared DEGs between ARDS and
Thrombosis
ClueGO, a Cytoscape plug-in, was utilized to further gain
insights into a functionally grouped network of an enriched
biological pathway on the shared DEGs.20 The zero-order

interaction network with 519 nodes was downloaded and fed
intotheCytoscapewiththeirexpressionvaluesandadditionally,
the names of top 20 hub genes were provided to ClueGo for
exploring theenrichedpathwaysandbiological terms related to
our DEGs/networks. We have specifically selected our top 20
hubgenes as thesegeneshavehighdegreeofconnectivity in the
PPI network for our functional analysis. ClueGO is a user-
friendly tool to examine the interrelations of terms and func-
tional groups in biological networks. It allows a variety of
flexible adjustments for a profound exploration of gene clusters
inbiologicalnetworks. It visualizes thenonredundantbiological
terms for large clusters of genes and pathways resulted from
functional enrichment analysis in a grouped network.We used
enrichment (right-sided)hypergeometricdistributiontests. The
GOtermsandpathwayswere rankedbasedontheir significance
with a cut-off p � 0.05, followed by the Bonferroni adjustment
for the terms.

Statistical Analyses
The ES combination using the REM was used for the meta-
analysis by a web-based tool, INMEX. DEGs were selected

Fig. 1 Flow diagram depicting the selection of microarray meta-analysis and characteristics of individual studies included in the study. ARDS,
acute respiratory distress syndrome, GEO, gene expression omnibus; VTE, venous thromboembolism.
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based on the FDR using the Benjamini–Hochberg procedure
with an adjusted p-value of <0.05. Hypergeometric test
(right sided) and Benjamini–Hochberg FDR correction with
an adjusted p-value of �0.05 were used for the functional
enrichment analysis.

Results

Selection of Eligible Microarray Datasets
A total of two studies met the inclusion criteria and were
selected for the meta-analysis. The datasets GSE76293 and
GSE19151 covered ARDS21 and VTE,22 respectively. ►Fig. 1

provides the detailed information of each datasets and high-

lights the disease condition, sample groups, source of samples,
microarray platform used, and references of the studies. The
datasets included in this meta-analysis were case/control
studies with a collective number of 12/12 and 70/63 for
ARDS and VTE, respectively. The gene expression of treated
samples used in ARDS was excluded from our meta-analysis.

Reduction of Confounding Factors by ComBat Procedures
Before identifying the shared DEGs between ARDS and VTE,
the datasets were preprocessed and normalized using the
INMEX tool. ComBat procedures took care of reducing the
potential study-specific “batch effects.” ►Fig. 2A visually
examines the sample clustering patterns before applying

Fig. 2 Result illustrations of comprehensive transcriptomics meta-analysis between acute respiratory distress syndrome (ARDS) and venous
thromboembolism (VTE) using integrative meta-analysis of expression data (INMEX) tool (A) Plot of principal component analysis (PCA) as validation tool
before batch effect removal and (B) after batch effect removal (using Combat method). (C) The Venn diagram comparing differentially expressed genes
(DEGs) sets identified by the individual studies and by meta-analysis. The results obtained by the meta-analysis (1,878 DEGs) are compared with DEGs
identified by individual study of VTE andARDS. (D) Networkdepicting zero-order interaction of the sharedDEGs in betweenARDS and VTEdatasets. Among
the top 20 hub genes, few selected hub genes known to participate in host-viral interaction are shown in purple (overexpressed genes) and yellow
(underexpressed gene) colors using Cytoscape. (E) Overrepresentation of pathways and gene ontology categories in biological networks identified from
meta-analysis. Network representations of enriched pathway integrating the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathways
along with Gene ontology for the selected top 20 hub genes using ClueGO Cytoscape plug-in. Hyper-geometric enrichment distribution tests, with an
adjusted p-value of �0.05, followed by the Bonferroni adjustment for the terms and term groups were selected based on the highest significance.
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the batch adjustment algorithm using the principal compo-
nent analysis (PCA).►Fig. 2B visualizes the inter mixing of all
samples from the datasets after the correction of the batch
effect. This demonstrates removing of the confounding
factors due to the nonbiological variations and thereby,
reducing the potential study-specific “batch effects.”

Shared Transcriptomics Signature among ARDS and VTE
The implementationofESandREMstatistical analysisof INMEX
identified a common transcriptional signature shared between
ARDS and VTE. A total of 1,878 DEGs including 736 overex-
pressed and1,142 underexpressedgeneswere identifiedunder
the significance threshold of adjusted p-value of <0.05. The
complete list of significant overexpressed and underexpressed
DEGs from the meta-analysis with combined effect size and
adjusted p< 0.05 is provided in ►Supplementary Table S1.
Based on the values of combined ES, the basic Leucine Zipper
ATF-like transcription factor (BATF), ATP synthase membrane
subunit 6.8PL (ATP5MPL), inorganic pyrophosphatase 2 (PPA2),
purine nucleoside phosphorylase (PNP), glutathione S-transfer-
ase omega-1 (GSTO1), proteasome 20S subunit alpha 6
(PSMA6), transportin 1 (TNPO1), insulin-like growth factor-
binding protein 7 (IGFBP7), NADH:ubiquinone oxidoreductase
subunitC2 (NDUFC2), andmembranespanning4-domainsA4A
(MS4A4A) were among the most overexpressed genes with
significant p-values. While, nucleoporin 93 (NUP93), cas scaf-
foldprotein familymember4 (CASS4),NLRfamilypyrindomain
containing 1 (NLRP1), WW domain binding protein 11
(WBP11), WD repeat containing antisense to TP53 (WRAP53),
peroxisomal biogenesis factor 5 (PEX5), RAC-α serine/threo-
nine-protein kinase (AKT1), DDB1 and CUL4 associated factor
15 (DCAF15), SERPINE1MRNA binding protein 1 (SERBP1), and
CBFA2/RUNX1 partner transcriptional corepressor 2 (CBFA2T2)
were themost underexpressed genes with significant p-values
across the two microarray datasets. ►Fig. 2C illustrates the
Venndiagramcomparing DEGs sets identified by the individual
studies andbymeta-analysis. The results obtained by themeta-
analysis (1,878 DEGs) are compared with DEGs identified by
individual studyofARDSandVTE.Outof the total of 1,878DEGs
identified in ourmeta-analysis, a total of 390 geneswere found
to be shared in these two datasets while 1,481 genes from the
meta-analysis were shared by VTE dataset individually. A
Bayesian meta-analysis model was deployed that combined
theprobabilities across studies andaccounted for thevariability
across studies.23

Identification of Overrepresented Biological Pathways
and Gene Ontology Terms Using Gene Set Enrichment
Analysis
Overrepresentedbiological pathways associatedwith theDEGs
were evaluated by the gene set enrichment analysis of the
Kobas3.0 tool using the complete list of significant upregulated
and downregulated DEGs. The results for the enriched biologi-
cal pathways from various pathway analysis libraries, like the
KEGG, Reactome pathway, and PANTHER, were selected with
adjusted p-value of< 0.05 (►Table 1). Our meta-analysis
showed signaling by interleukins (R-HSA-449147), transcrip-
tional regulationby TP53 (R-HSA-3700989), platelet activation,

signaling and aggregation (R-HSA-76002), inflammation me-
diated by chemokine and cytokine signaling (P00031), cellular
response to hypoxia (R-HSA-1234174), and complement and
coagulation cascades (HSA04610) as top enriched pathways
with adjusted p-value of< 0.05 (►Table 1).

Network-Based Meta-analysis for Key Hub Genes
NetworkAnalyst/INMEX was implemented to generate a PPI
network by integrating the InnateDB interactome for the
complete list of 1,878 DEGs. However, for better visualizations
of PPI network, we selected “zero-order” interaction network
with519nodes connectedwith1,181edges.►Supplementary

Table S2 provides the complete list of 519 node genes of the
zero-order interaction network. The key hub genes were then
extracted based on their topological parameters, viz., degree
centrality and betweenness centrality, using Cytoscape
through the network analyzer. The values of combined ES
and p-value in the table is derived from the differential
expression analysis using INMEX. The most highly ranked
nodes across the two datasets based on the network topology
measures were tumor protein 53 (TP53; betweenness
centrality¼ 0.294; degree¼ 60) and ubiquitin B (UBB; be-
tweenness centrality¼ 0.202; degree¼ 39) followed by heat
shock protein 90 alpha family class-A member 1 (HSP90AA1;
betweenness centrality¼ 0.193; degree¼ 31), and AKT1 (be-
tweenness centrality¼ 0.133; degree¼ 30). ►Table 2 gives
the list of top 20 hub genes of the analysis based on the
topological parameter, that is, degree using Cytoscape. To gain
further insights into a functionally grouped network of an
enriched biological pathway on the DEGs, we specifically
selected our top 20 hub genes for pathway enrichment using
the ClueGO, a Cytoscape plug-in. ClueGO facilitates the visual-
izationof pathway interaction in the formofnetwork andhave
highlighted the pathways, such as signaling of Notch, stabili-
zation of P53, activation of nuclear factor (NF)- κβ, and various
cell cycle checkpoints, in our study (►Fig. 2E).

Discussion

Thromboinflammation, a term that describes inflammation-
triggered platelets activation accompanied by endothelium
damage, is theone that explains thewidespreadobservationof
fibrin deposition and thrombus formation as the consequence
of an infection in the poor COVID-19 patient outcome.11 The
higher incidence of ARDS and VTE are found to overlap in the
severe COVID-19 patients.1–4 To initiate our understanding of
the pathophysiological mechanism of this disease and SARS-
CoV-2 pathogenicity, we attempted to identify the shared
transcriptomic signatures between the two diseases, ARDS
and VTE, using gene expression meta-analysis of the two
publically available microarray datasets. The gene expression
profile dataset for ARDSwas derived from the polymorphonu-
clear leukocytes,21 while for VTE, the gene expression profile
dataset was derived from thewhole blood sample.22 A total of
1,878 DEGs including 736 overexpressed and 1,142 underex-
pressedgeneswere identifiedunder thesignificance threshold
of adjusted p< 0.05. ►Supplementary Table S1 presents the
complete list of overexpressed and underexpressed DEGs
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Table 1 Enrichment analysis of the shared DEGs in the meta-analysis according to Kobas3.0

Pathway ID Enriched pathway Database Input no. Background no. p-Value

R-HSA-449147 Signaling by interleukins Reactome 92 619 3.51E-30

R-HSA-3700989 Transcriptional regulation by TP53 Reactome 71 359 4.07E-30

R-HSA-109582 Hemostasis Reactome 78 617 7.22E-22

R-HSA-1257604 PIP3 activates AKT signaling Reactome 48 247 1.55E-20

R-HSA-5633007 Regulation of TP53 activity Reactome 37 159 2.29E-18

R-HSA-913531 Interferon signaling Reactome 39 194 2.15E-17

R-HSA-449836 Other interleukin signaling Reactome 43 275 1.57E-15

R-HSA-446652 Interleukin-1 family signaling Reactome 29 138 9.83E-14

R-HSA-877300 Interferon gamma signaling Reactome 23 90 1.10E-12

R-HSA-9020702 Interleukin-1 signaling Reactome 23 101 8.36E-12

R-HSA-76002 Platelet activation, signaling and aggregation Reactome 34 260 1.08E-10

R-HSA-1169091 Activation of NF-κβ in B cells Reactome 18 66 1.25E-10

P00031 Inflammation mediated by chemokine
and cytokine signaling

PANTHER 29 201 3.24E-10

R-HSA-1234174 Cellular response to hypoxia Reactome 18 74 6.08E-10

P00036 Interleukin signaling PANTHER 18 80 1.78E-09

R-HSA-1234176 Oxygen-dependent proline hydroxylation
of hypoxia-inducible factor alpha

Reactome 16 65 4.67E-09

hsa04621 NOD-like receptor signaling KEGG 25 178 8.51E-09

hsa04657 Interleukin -17 signaling KEGG 18 93 1.39E-08

R-HSA-9020591 Interleukin-12 signaling Reactome 13 47 4.02E-08

R-HSA-447115 Interleukin-12 family signaling Reactome 14 57 4.36E-08

P00047 PDGF signaling PANTHER 19 124 1.51E-07

R-HSA-6785807 Interleukin-4 and Interleukin-13 signaling Reactome 17 108 4.80E-07

R-HSA-8950505 Gene and protein expression by JAK-STAT
signaling after interleukin-12 stimulation

Reactome 10 38 2.17E-06

R-HSA-448424 Interleukin-17 signaling Reactome 11 72 6.26E-05

R-HSA-6783783 Interleukin-10 signaling Reactome 8 47 0.000324

hsa04610 Complement and coagulation cascades KEGG 10 79 0.000523

R-HSA-1059683 Interleukin-6 signaling Reactome 4 11 0.001037

R-HSA-9008059 Interleukin-37 signaling Reactome 5 21 0.0012

R-HSA-8984722 Interleukin-35 signaling Reactome 4 12 0.001348

R-HSA-6783589 Interleukin-6 family signaling Reactome 5 24 0.002002

R-HSA-5660668 CLEC7A/inflammasome Reactome 3 6 0.002313

R-HSA-8854691 Interleukin-20 family signaling Reactome 5 25 0.002341

P00011 Blood coagulation PANTHER 6 38 0.00253

R-HSA-2162123 Synthesis of prostaglandins (PG)
and thromboxanes (TX)

Reactome 4 15 0.002662

P00030 Hypoxia response via HIF activation PANTHER 5 26 0.002719

R-HSA-448706 Interleukin-1 processing Reactome 3 8 0.004333

R-HSA-451927 Interleukin-2 family signaling Reactome 6 44 0.004852

R-HSA-9020933 Interleukin-23 signaling Reactome 3 9 0.005641

R-HSA-512988 Interleukin-3, interleukin-5
and GM-CSF signaling

Reactome 6 47 0.006471

R-HSA-9020956 Interleukin-27 signaling Reactome 3 11 0.008903

R-HSA-1234158 Regulation of gene expression
by hypoxia-inducible factor

Reactome 3 11 0.008903
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sorted on the basis of combined ES. To elucidate the role of
DEGs obtained from themeta-analysis, we performedgene set
enrichment analysis and pathway analysis using the compre-
hensiveenrichment libraryofKobas3.0. Interestingly, themost
enriched pathways among the shared DEGs of the meta-
analysis were “signaling by interleukins,” “platelet activation,”
“signaling and aggregation,” “inflammation mediated by che-
mokineandcytokinesignaling,” “cellular response tohypoxia,”
and “complement and coagulation cascades.” Intriguingly,
“inflammasome pathways” and “oxygen-dependent proline

hydroxylation of hypoxia-inducible factor α (HIF-1α)” were
also present among the significantly enriched pathways in the
two datasets. Some of the genes comprising these two path-
ways such as REL-associated protein (RELA) and caspase 8 of
“inflammasome pathways” were among the significantly
under expressed genes of our meta-analysis. While phospha-
tidylinositol-4,5-bisphosphate 3-kinase catalytic subunit β
(PIK3CB), phosphoinositide-3-kinase regulatory subunit 1
(PIK3R1), proteasome 26S subunit, non-ATPase 9 (PSMD9),
and UBB of “cellular response to hypoxia” pathway were

Table 1 (Continued)

Pathway ID Enriched pathway Database Input no. Background no. p-Value

R-HSA-912526 Interleukin receptor SHC signaling Reactome 4 26 0.014291

R-HSA-2022377 Metabolism of angiotensinogen to angiotensins Reactome 3 18 0.027605

R-HSA-1266695 Interleukin-7 signaling Reactome 4 36 0.037224

hsa04614 Renin-angiotensin system KEGG 3 23 0.048055

Abbreviations: AKT, α serine/threonine-protein kinase; DEG, differentially expressed genes; GM-CSF, gross motor-cerebrospinal fluid; HIF, hypoxia-
inducible factor; KEGG, Kyoto encyclopedia of genes and genomes; NF, nuclear factor; NOD, nucleotide-binding, oligomerization domain; PDGF,
platelet-derived growth factor; JAK-STAT, janus kinase-signal transducer and activator of transcription; CLEC7A, C-type lectin domain containing 7A;
SHC, Src homology 2 domain; PIP3, phosphatidylinositol (3,4,5)-trisphosphate.
Note: Input number signifies the number of hits from themeta-analysis whereas background number is from each curated gene set library. Pathways
in the table were ranked based on the adjusted p-value.

Table 2 Top twenty hub genes prioritized based on the topological parameters, that is, degree using Cytoscape

Entrez ID Symbol Degree Betweenness centrality Closeness centrality Combined ES p-Value

7157 TP53 60 0.294336 0.369736 �1.6588 0

7314 UBB 39 0.202782 0.349528 0.4802 0.02506

3320 HSP90AA1 31 0.193582 0.352381 0.7022 0.00034

207 AKT1 30 0.133454 0.342366 �1.847 0.000224

983 CD1 27 0.052607 0.318769 0.65994 0.000892

8850 KAT2B 24 0.0692 0.32134 0.6207 0.001954

10594 PRPF8 23 0.033761 0.255172 �1.5438 0

4088 SMAD3 22 0.075699 0.31318 �1.3522 5.34E-12

998 CDC42 20 0.0827 0.289547 0.73897 0.005455

3184 HNRNPD 20 0.035921 0.27364 �0.82441 0.000317

1457 CSNK2A1 19 0.11239 0.315661 �0.51181 0.015109

1660 DHX9 18 0.087967 0.290685 �0.43831 0.047395

5970 RELA 18 0.080218 0.323144 �1.4588 2.12E-13

9978 RBX1 17 0.019157 0.272202 1.5674 0

5710 PSMD4 16 0.002551 0.266324 0.80414 3.19E-05

5706 PSMC6 16 9.23E-04 0.267286 0.44812 0.041198

5690 PSMB2 16 0.00169 0.267286 �0.48723 0.022315

220988 HNRNPA3 16 0.001619 0.239482 �0.5779 0.004609

6429 SRSF4 16 0.005126 0.239593 �0.82971 1.67E-05

5591 PRKDC 16 0.055064 0.324765 �1.1922 6.3E-10

Abbreviations: AKT1, α serine/threonine-protein kinase 1; CD1, cyclin-dependent 1; DHX9, DExH-box helicase 9; ES, effect size; HSP90AA1, heat shock
protein 90 alpha family class-Amember 1; KAT2B, lysine acetyltransferase 2B; PSMB2, proteasome 20S subunit beta; PSMD4, proteasome 26S subunit, non-
ATPase 4; RBX1, RING-box protein 1; RELA, REL-associated protein; TP53, total protein 53; UBB, ubiquitin B; PRPF8, pre-mRNA-processing-splicing factor 8;
CDC42, cell division control protein 42 homolog; HNRNPD, heterogeneous nuclear ribonucleoprotein D; CSNK2A1, casein kinase II subunit alpha; PSMC6,
proteasome26S subunit,ATPase6;HNRNPA3,heterogeneousnuclear ribonucleoproteinA3; SRSF4, serineandarginine rich splicing factor4;PRKDC,protein
kinase, DNA-activated, catalytic subunit.
Note: Expression level (combined ES) and p-value was added from the meta-analysis in the table. The highlighted ones are the genes known to
participate in host-viral interactions.
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among the significant overexpressed genes of our meta-anal-
ysis. Our previous reports have revealed thrombosis due to
hypoxia is centrally regulated by a complex network of coag-
ulatory and inflammatory processes, critically linked through
HIF-1α.24 Conceivably, COVID-19 pathogenesis also witnesses
inflammation–coagulation–hypoxemia convolutions. SARS-
CoV-2 pathology is associated with inflammation-mediated
coagulation with the consistent observation of COVID-19
associated coagulopathy as a result of profound inflammatory
responses.2,3Nevertheless, the procoagulant effect of the virus
itself cannot be overlooked and needs thorough investigation.
Although a detailed SARS-CoV-2 pathological mechanism is
yet to be investigated but the lessons learnt from other virus
infections particularly the SARS-CoV-2 reports abnormalities
in the fibrinolytic and extrinsic coagulation system.25 The key
intrinsic ways of viruses influencing the coagulation system
could be through severe endothelial imbalances promoting
prothrombotic phenotypes. Furthermore, the inflammasome-
activation feature of SARS-CoV-2 should be considered closely
in evaluating intrinsic procoagulant capabilities of SARS-CoV-
2 as well. The earlier SARS virus has shown the robust mecha-
nism of NLRP3 inflammasome activation in macrophage by
providing a potent signal for its activation.26 There study
identified several other mechanisms, such as induction of
endoplasmic reticulum stress, lysosomal damage, and subse-
quent activation, of themaster regulator of the autophagy and

lysosomemachinery, transcription factor EB bywhich a SARS-
CoV-2 open reading frame activates intracellular stress path-
ways and targets the innate immune response. Moreover, the
series of changes induced by the virus in their host cells could
be perceived as endogenous damage-associated molecular
patterns (DAMP) to be recognized by NLRP3 inflammasome
as well. Hypoxemia, one of the most important cellular
changes in the context of COVID-19, is one of the potent
DAMP signals for NLRP3 activation.21 Thus, the inflammation,
coagulation, and hypoxemia, as evident in our pathway en-
richment analysis, in a highly interrelated fashion could be
postulated in enhancing thrombotic condition and disease
severity in COVID-19 patients.

Until now, transmembrane angiotensin-converting en-
zyme 2 (ACE2) through which COVID-19 virus gain entry
into the cells, similar to the SARS-CoV-2, has been the focal
point for researchers.27 Our analysis indicated several other
nodal points of the host–virus interactions that should be
considered evenly. ►Supplementary Table S2 provides the
complete list of 519 nodes genes of the zero-order network as
obtained from Cytoscape using network analyzer. At least 9
genes among the top 20 highly ranked hub genes (overex-
pressed and underexpressed) are known to be involved in
host–virus interactions. These were TP53, cyclin-dependent
kinase 1 (CDK1), lysine acetyltransferase 2B (KAT2B),
SMAD3, DExH-box helicase 9 (DHX9), RELA, RING-box

Fig. 3 Diagrammatic illustration of host-viral interactions of some of the hub genes that came out from our network-based meta-analysis. The
host–virus interactions participation of some of our hub genes is suggestive that these pathological conditions strengthens a favorable
environment for virus and further aids in aggravating its viral load and deterioration of patients. ACE2, angiotensin-converting enzyme 2; CDK1,
cyclin dependent kinase 1; DHX9, DExH-box helicase 9; IKK, i-κ-kinase; KAT2B, lysine acetyltransferase 2B; NF-κβ, nuclear factor kappa B; P21/
CDK, P21/cyclin-dependent kinase; PSMB2, proteasome β subunits 2 family; PSME3, proteasome activator complex subunit 3; RBX1, RING-box
protein 1; RELA, REL-associated protein; SARS-CoV-2, severe acute respiratory syndrome-coronavirus-2; TLR2, toll-like receptor 2; TMPRSS2,
transmembrane serine protease 2; TP53, tumor protein 53; WRAP53, WD repeat containing antisense to TP53.
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protein 1 (RBX1), and proteasome 20S subunit beta-2
(PSMB2; ►Fig. 2D). TP53, the top hub gene of our meta-
analysis, is a known target of several viral oncoproteins
including SARS-CoV-2 that functionally inactivates it.28

Their study observed that the human coronaviruses antago-
nize the viral inhibitor p53 via stabilizing CHY zinc-finger
domain-containing 1 (RCHY1) as an interacting partner of
the viral SARS unique domain and promoting RCHY1-medi-
ated p53 degradation. Possibly, its downregulation could be
utilized by the virus for its own aid in replication and
pharmacological rescue of p53 functions might be explored
in keeping a check on the virus.29 Intriguingly, proteasome
activator complex subunit 3 (PSME3), a negative regulator of
TP5330 and WRAP53 that gives rise to p53 antisense tran-
scripts and regulates p53 mRNA were among the top down-
regulated DEGs of the meta-analysis.31 Subsequently, the
pathways related to TP53, such as transcriptional regulation
by TP53 and regulation of TP53 activity, were also among the
top-enriched pathways (►Table 1). All of these parallel
results are suggestive of the potential of the TP53 gene
function in the understanding of SARS-CoV-2 mechanisms.
Similarly, the other top hub genes, such as SMAD3 of trans-
forming growth factor-β (TGF-β) signaling pathway should
be investigated for its effects on a large number of biological
processes.32

RELA (P65) of theNF-κβ family couldbemanipulatedby the
virus for modulating NF-κβ signaling that has a profound role
in antiviral and antimicrobial responses, immune cell activa-
tion, and control of viral gene expression.33 Cyclin-dependent
kinase 1 (CDK1), a key player in cell cycle regulation, is shown
to interact with the viral proteins, so that the virus can
manipulate the cell cycle for the advantage of their own
replication.34 Likewise, PSMB2, a member of the proteasome
β subunits (PSMB) family, has been observed as a negative
regulator of the innate immune responses during viral infec-
tion through inhibition of RIG-I- and toll-like receptor 3
(TLR3)-mediated type-I interferon responses.35 RBX1 is an
important functional member of cullin-ring E3 ubiquitin
ligases complex.36,37 This complex is observed to be hijacked
by the viruses for proteasomal degradation of antiviral
enzymes produced as a result of host response against virus-
es.36,37 Likewise, DHX9 has been identified as a binding
partner of various DNA and RNA viruses to assist replication
of the viral genome.38 DHX9 participates in many cellular
pathways including transcription and translation and may
enhance virus production or demonstrate the antiviral func-
tions depending on the various stages of the viral life cycle.38

Similarly, the transcriptional coactivators p300/CBP interacts
with an essential viral oncoprotein to suppress the transcrip-
tion of several genes associated with KAT2B and p53 activa-
tion.39 Perhaps, the host–virus interactions participation of
these hub genes in a datasets of ARDS and thrombosis is
suggestive that these pathological conditions strengthen a
favorable environment for virus and further aids in aggravat-
ing its viral load and deterioration of patients (►Fig. 3). Our
analysis gives insights into these genes and paves the way to
understand the various strategies deployed by the virus to
improve its replication and spreading.
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