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Abstract Background An adequate sample size calculation is essential for designing a successful
clinical trial. One way to tackle planning difficulties regarding parameter assumptions
required for sample size calculation is to adapt the sample size during the ongoing trial.
This can be attained by adaptive group sequential study designs. At a predefined
timepoint, the interim effect is tested for significance. Based on the interim test result,
the trial is either stopped or continued with the possibility of a sample size
recalculation.
Objectives Sample size recalculation rules have different limitations in application
like a high variability of the recalculated sample size. Hence, the goal is to provide a tool
to counteract this performance limitation.
Methods Sample size recalculation rules can be interpreted as functions of the observed
interimeffect.Often, a “jump” from thefirst stage’s sample size to themaximal sample size
at a rather arbitrarily chosen interim effect size is implemented and the curve decreases
monotonically afterwards. This jump isone reason for a highvariabilityof the sample size. In
this work, we investigate how the shape of the recalculation function can be improved by
implementing a smoother increase of the sample size. The design options are evaluated by
means ofMonteCarlo simulations. Evaluation criteria are univariate performancemeasures
such as the conditional power and sample size as well as a conditional performance score
which combines these components.
Results We demonstrate that smoothing corrections can reduce variability in
conditional power and sample size as well as they increase the performance with
respect to a recently published conditional performance score for medium and large
standardized effect sizes.
Conclusion Based on the simulation study, we present a tool that is easily imple-
mented to improve sample size recalculation rules. The approach can be combined
with existing sample size recalculation rules described in the literature.
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Introduction

Areliable sample size calculation is an importantdeterminant for
the success of a clinical trial. However, even with thorough
literature research and solid medical expertise, it is not always
possible tomake reasonable planning assumptions. Thus, chang-
ing the sample size during an ongoing trial seems appealing to
incorporateevidence fromthedata collected so far. This is thekey
idea of adaptive study designs with unblinded sample size
recalculation.1,2 Sample size recalculation rules can be inter-
preted as functions of the observed interim effect. Current rules
proposed in the literature often suffer from a high variability of
the recalculated sample size,3 which is a random variable.
Recalculation rules have in common that they take values
between the first stage’s sample size n1 (no additional sample
size) and apredefinedmaximal sample size nmax. Usually, a single
“jump” from n1 to nmax is implemented. However, a medical
researcher would probably not understand that for an observed
interim effect of 0.22 the studymust be stopped early for futility
and for an observed effect of 0.23 the study continues with nmax.
This “jump” is one reason for a highvariabilityof the recalculated
sample size.

Objectives

In this work, we investigate how the shape of the recalcula-
tion function can be improved by a smoother increase of the
sample size. These smoothing corrections are evaluated by
means of Monte-Carlo simulations. Performance indicators
are the conditional power and sample size of the second
stage as well as a conditional performance score which
incorporates sample size and power components.

Methods

Test Problem and Trial Design
We consider a 1:1 randomized, controlled clinical trialwith a
normally distributed primary end point withmeans μC in the
control group, μI in the intervention group, and known
variance σ2 for both groups. The hypotheses for the one-
sided test problem are formulated as

H 0 : μI � μC � 0 andH 1 : μI � μC > 0:

The study is conducted as a two-stage adaptive group-
sequential clinical trial design with n1 patients per group for
the first stage and a function n2(·)�nmax�n1 for the number
of patients per group for the second stage, where nmax is the
maximal total sample size. The null hypothesis is testedwith
the common Z-test, where Z1 defines the interim test
statistic and the test statistic for the final analysis Z1þ2 is
obtained by means of the inverse normal combination test.4

If Z1 � cef f or Z1þ2 � cf inal, the null hypothesis is rejected.
The trial is continued to the second stage if Z1 falls within the
so-called “recalculation area” cf ut � Z1 < cef f , where cf ut is
the futility stopping boundary, cef f the multiplicity-adjusted
efficacy stopping boundary after the first, and cf inal after the
second stage.

Sample Size Recalculation
There exist many ways of recalculating the sample size at the
interim analysis. Most established recalculation rules are based
on conditional power arguments.2,5 For illustrative purposes, we
focus here on the commonly used “restricted observed condi-
tional power approach.”At the interim analysis, the sample size
for the second stage is calculated such that a predefined condi-
tional power value 1� β can be reached. Thereby, the observed
interim effect is used as an estimator for the true underlying
effect. If the recalculated sample size exceeds the maximally
feasible sample size nmax, the sample size is restricted to nmax.
Furthermore, a minimal conditional power 1� βmin must be
reached to justify the increase to nmax. This results ina sample size
recalculation function starting with a plateau at n1 (no increase),
then jumping to a plateau at nmax and then decreasing
monotonically.

Smoothing Correction
To reduce the variability of the recalculated sample size, we
propose a smoothing correction to increase the sample size
from n1 to nmaxwithin the interval ½cf ut ; cincr Þ; where
cincr < cef f is the smallest interim test statistic suggesting
nmax according to the selected sample size recalculation rule.

We consider five classes of simple smoothing functions to
do so, as graphically illustrated in ►Fig. 1 and described
mathematically in ►Appendix A:

• A linear increase,
• A stepwise increase,
• A sigmoid increase,
• A concave increase and
• A convex increase.

Note that these five function classes represent different
general approaches for smoothing of which we aim to
identify the most promising. We do not aim at optimizing
a specific function shape within this work.

Performance Evaluation
Whereas in a one-stage design, the performance measures
are simply given by power and sample size, in an adaptive
design, both the conditional power and the second stage
sample size are random variables. A good performance is
therefore given if the average conditional power meets its
target, the average sample size is neither too high nor too
low, and the corresponding variances are reasonably small.
Recently, Herrmann et al6 proposed a conditional perfor-
mance score CPS averaging these indicators (location of
conditional power and sample size, variation of conditional
power and sample size) within a single performance mea-
sure. The location components are constructed as follows

locationX ¼ 1� E X½ � �Xtarget

�� ��= Xmax � Xminð Þ;

where X refers either to conditional power or sample size. The
expectation can be estimated via the corresponding average, all
other values in the formulaarefixedquantities. Fromthe location
formula, it can be seen that the idea is to compare the expected
value E X½ � to a predefined target value Xtarget in relation to the
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maximally possible deviationXmax � Xmin. Similarly, the variation
components are formulated as

variationX ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xð Þ=Varmax Xð Þ

p
;

where X refers again either to conditional power or
sample size. Here, observed variance is seen in relation to
the maximally possible variance Varmax Xð Þ. The score CPS as
well as its components are constructed such that they range
between 0 and 1 and higher values refer to a better
performance.

Simulation Setup
We conduct a Monte-Carlo simulation study to assess the
potential performance improvement when adding the
smoothing corrections presented above. We set the global
one-sided significance level to α ¼ 0:025 and the binding
futility stopping bound to cf ut ¼ 0:0. The inverse normal
combination test4 is applied with an equal weighting of
the two stages. We investigate true underlying standardized
effect sizesD ¼ μI � μCð Þ=σ from 0.0 to 1.0 by steps of 0.1. The
following sample size constellations and locally adjusted
significance levels are considered:

• Scenario 1: n1 ¼ 50 and nmax ¼ 200 and local significance
levels according to O’Brien and Fleming,7

• Scenario 2: n1 ¼ 50 and nmax ¼ 150 and local significance
levels according to O’Brien and Fleming,7

• Scenario 3: n1 ¼ 25 and nmax ¼ 150 and local significance
levels according to O’Brien and Fleming,7

• Scenario 4: n1 ¼ 50 and nmax ¼ 200 and local significance
levels according to Pocock,8

• Scenario 5: n1 ¼ 50 and nmax ¼ 200 and local significance
levels according to Wang and Tsiatis9 with Wang-Tsiatis-
parameter 0.25.

For each scenario, we draw 10,000 replications from a
normal distribution N D

ffiffiffiffiffiffiffiffiffiffiffi
n1 =2

p
;1

� �
to generate the observed

values of the interim test statistics. Based on this set of
observed values, we recalculated the sample size according
to the restricted observed conditional power approach with
1� βmin ¼ 0:6 and an anticipated conditional power
1� β ¼ 0:8 combined with and without the smoothing cor-
rections presented above. We evaluated the scenarios with
respect to average conditional power and sample size, their
variances, and the conditional performance score.6 Simula-
tions were performed with the software R.10

Results

Within this section, we discuss all five classes of smoothing
functions in allfive scenarios presented above. For the sake of
readability, we restrict our tabulated results to Scenario 1 in
the main manuscript (►Table 1). The tabulated results
for Scenarios 2 to 5 can be found in the ►Supplementary

Tables S1 to S4 (available online only).
The results of Scenario 1 show that all smoothing correc-

tions result in slightly larger average sample sizes, as the
smoothing correction implies an increase in sample size
(cf. ►Table 1 Column 3). It can be seen that stepwise

Fig. 1 Total recalculated sample size per group for Scenario 1 based on the restricted conditional power approach without smoothing correction
(blue), with linear smoothing (green), stepwise smoothing (purple), sigmoid smoothing (magenta), concave smoothing (orange), convex
smoothing (black), and first stage sample size n1 ¼ 50, maximal sample size nmax ¼ 200, global significance level α ¼ 0:025, binding futility
stopping bound cfut ¼ 0, smallest interim test statistic cincr ¼ 1:116 suggesting nmax according to selected recalculation rule, largest interim test
statistic cdecr ¼ 1:332 suggesting nmax according to selected recalculation rule, efficacy stopping bound cef f ¼ 2:790 after the first stage and
efficacy stopping bound cf inal ¼ 1:973 (according to O’Brien and Fleming7) after the second stage.
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Table 1 Estimated pointwise conditional performance score and related conditional performance measures with n1¼ 50,
nmax¼ 200, α¼ 0.025, cfut¼0, cincr¼ 1.116, cdecr¼1.332, ceff¼ 2.790, cfinal¼ 1.973 (multiplicity adjustment according to
O’Brien and Fleming7) and weights 1=

ffiffiffi
2

p
for the inverse normal combination test (Scenario 1)

D Smoothing Average sample
size second stage

Variance of sample
size second stage

Average
conditional
power

Variance of
conditional
power

Conditional
performance
scorea

0.0 Without 75.873 2,500.657 0.204 0.116 0.574

Linear 126.114 2,117.314 0.292 0.101 0.493

Stepwise 108.195 2,377.465 0.274 0.101 0.518

Sigmoid 117.582 3,403.994 0.295 0.102 0.464

Concave 144.750 2,143.337 0.305 0.099 0.459

Convex 107.477 2,520.527 0.278 0.103 0.511

0.1 Without 83.687 2,806.324 0.300 0.144 0.507

Linear 128.908 2,152.401 0.385 0.114 0.453

Stepwise 113.744 2,343.830 0.368 0.117 0.473

Sigmoid 122.781 3,247.434 0.388 0.115 0.426

Concave 144.544 2,239.472 0.397 0.110 0.423

Convex 113.273 2,523.429 0.373 0.119 0.466

0.2 Without 89.223 2,803.946 0.407 0.153 0.464

Linear 128.110 2,241.270 0.486 0.111 0.427

Stepwise 115.975 2,236.044 0.470 0.116 0.448

Sigmoid 124.451 3,059.403 0.490 0.111 0.406

Concave 140.330 2,479.820 0.497 0.106 0.400

Convex 115.890 2,444.768 0.475 0.117 0.439

0.3 Without 93.038 2,645.027 0.522 0.139 0.432

Linear 122.799 2,413.852 0.588 0.090 0.543

Stepwise 113.843 2,223.251 0.575 0.097 0.526

Sigmoid 121.177 2,948.012 0.591 0.089 0.524

Concave 131.118 2,766.602 0.596 0.085 0.551

Convex 114.480 2,419.475 0.580 0.096 0.522

0.4 Without 92.842 2,289.227 0.622 0.106 0.620

Linear 112.624 2,390.235 0.667 0.064 0.655

Stepwise 106.905 2,122.581 0.659 0.070 0.666

Sigmoid 111.960 2,707.405 0.670 0.063 0.648

Concave 117.824 2,761.486 0.673 0.060 0.640

Convex 107.424 2,273.953 0.662 0.069 0.662

0.5 Without 88.376 1,870.067 0.694 0.070 0.656

Linear 101.010 2,181.853 0.724 0.039 0.665

Stepwise 97.490 1,896.476 0.718 0.043 0.675

Sigmoid 100.912 2,364.080 0.726 0.038 0.661

Concave 104.038 2,502.587 0.727 0.036 0.654

Convex 97.983 2,022.049 0.721 0.042 0.671

0.6 Without 83.047 1,495.924 0.740 0.042 0.689

Linear 90.506 1,833.702 0.759 0.021 0.699

Stepwise 88.523 1,609.744 0.756 0.024 0.705

Sigmoid 90.556 1,944.184 0.760 0.020 0.696

Concave 92.056 2,039.396 0.761 0.019 0.692
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smoothing reduces the variability in sample size for small
and medium true effect sizes (D¼0.0�0.4, cf. ►Table 1

Column4).Within that effect range, often the linear, concave,
and convex smoothing lead to a reduction in variability in
sample size as well. In contrast, the sigmoid smoothing
approach, however, adds to an increase in variance in sample
size for all considered effect sizes. In general, a higher sample
size variance is caused by a recalculation function that takes
the minimally and maximally possible values within a small
interval. This is also the reason for the bad performance of
the sigmoid smoothing since its graph has a rather steep
increase from n1 to nmax (cf. ►Fig. 1). If the underlying true
effect is large (D¼0.5 or higher), the required sample size for
the second stage is (close to) 0, so any increase in the sample
size function has a negative impact on the variance. With
respect to the conditional power, all smoothing corrections
cause an increase in average conditional power (cf. ►Table 1

Column 5) and at the same time reduce the variability
compared with the approach without smoothing for all

considered effect sizes (cf. ►Table 1 Column 6). As the
conditional power is a monotonically increasing function
of the interim effect and sample size, the variability is
naturally reduced by the smoothing corrections. Considering
the conditional performance score (cf. ►Table 1 Column 7),
the smoothing provides a benefit for standardized effect
sizes of D¼0.3 or higher. The reason is that for a null effect
or very small effects, the target second stage sample size
within the conditional performance score is 0 and the
optimal conditional power is given by the local significance
level. Thus, any smoothing correction that increases the
sample size has a negative impact on the score. If the interim
effect is larger, the target second stage sample size is differ-
ent from0 and the target conditional power is 1�β. Here, the
reduced variability caused by smoothing as well as the
increased conditional power has a positive impact on the
score. However, for larger effect sizes, that improvement
becomes smaller or is no longer apparent (D ¼ 1:0). This is
due to the fact that the target sample size of the score is

Table 1 (Continued)

D Smoothing Average sample
size second stage

Variance of sample
size second stage

Average
conditional
power

Variance of
conditional
power

Conditional
performance
scorea

Convex 88.956 1,710.544 0.758 0.023 0.702

0.7 Without 78.031 1,105.555 0.770 0.022 0.735

Linear 81.977 1,346.081 0.781 0.010 0.744

Stepwise 81.023 1,209.807 0.779 0.011 0.747

Sigmoid 82.230 1,414.946 0.781 0.009 0.742

Concave 82.741 1,477.070 0.782 0.009 0.740

Convex 81.212 1,256.071 0.780 0.011 0.746

0.8 Without 73.463 858.014 0.790 0.007 0.779

Linear 74.731 956.005 0.794 0.003 0.788

Stepwise 74.404 900.420 0.793 0.003 0.789

Sigmoid 74.737 969.232 0.794 0.003 0.788

Concave 74.939 992.560 0.794 0.003 0.787

Convex 74.523 931.230 0.793 0.003 0.788

0.9 Without 67.541 402.875 0.794 0.004 0.820

Linear 68.238 462.443 0.796 0.002 0.825

Stepwise 67.999 432.512 0.796 0.003 0.826

Sigmoid 68.221 476.467 0.796 0.002 0.824

Concave 68.372 483.860 0.796 0.002 0.824

Convex 68.103 446.870 0.796 0.002 0.825

1.0 Without 64.458 241.188 0.793 0.005 0.831

Linear 65.316 306.793 0.795 0.003 0.832

Stepwise 65.271 298.788 0.795 0.003 0.833

Sigmoid 65.469 337.396 0.795 0.003 0.830

Concave 65.570 361.005 0.795 0.003 0.829

Convex 65.062 268.475 0.795 0.003 0.834

D, true standardized treatment effect.
aConditional performance score with an equal weighting of the components and target values as suggested in Herrmann et al.6

Methods of Information in Medicine Vol. 60 No. 1–2/2021 © 2021. The Author(s).

Smoothing Corrections for Sample Size Recalculation Herrmann, Rauch 5



smaller for higher effect sizes. The sampling probability to
observe a small interim effect when the true effect is large
intuitively becomes smaller and consequently the smoothing
effect is less prominent. Among all smoothing corrections for
Scenario 1, the stepwise approach usually outperforms the
other four smoothing approacheswith respect to variation in
sample size and the overall conditional performance score
over the range of different effect sizes (cf. ►Table 1 Columns
4 and 7). The convex approach shows a reasonable overall
performance as well.

Similar results can be found in Scenarios 2 and 3 for the
other two n1 and nmax combinations. Again, the average
sample size is increased for sample size recalculation with
smoothing corrections (cf.►Supplementary Tables S1 and S2

Column 3, available online only). The variance in sample size
is reduced for the stepwise smoothing approach for effect
sizes up to D ¼ 0:5 and the sigmoid smoothing approach
records an increase in the variance in sample size for all
considered effect sizes (cf.►Supplementary Tables S1 and S2

Column 4, available online only). In line with Scenario 1, the
average conditional power is increased and the variance of
the conditional power is reduced when comparing sample
size recalculation with and without smoothing corrections
(cf. ►Supplementary Tables S1 and S2 Columns 5 and 6,
available online only). Moreover, the conditional perfor-
mance score declares a benefit for the smoothing corrections
for effect sizes from D ¼ 0:4 since the target second stage
sample size of the conditional performance score equals 0 for
a broader effect size range than in Scenario 1 (cf.
►Supplementary Tables S1 and S2 Column7, available online
only). Among the smoothing approaches, the stepwise
smoothing performs usually better than the other ones
with respect to variability in sample size and the conditional
performance score throughout the different effect sizes.

Scenarios 4 and 5 behave similarly. Again, we observe an
increase in the average sample size (cf. ►Supplementary

Tables S3 and S4 Column 3, available online only). Note that
the different multiplicity adjustments have an impact on the
width of the recalculation area with cef f ¼ 2:176 for the
adjustment according to Pocock8 and cef f ¼ 2:420 for the
adjustment according to Wang and Tsiatis,9 while it was
cef f ¼ 2:790 for O’Brien and Fleming.7 Thus, in these two
Scenarios 4 and 5, the recalculation area becomes smaller
compared with Scenarios 1 to 3 and as a consequence, the
smoothing corrections also lead to a variance reduction in
sample size for effect sizes above 0:4 (cf. ►Supplementary

Tables S3 and S4 Column 4, available online only), in partic-
ular the stepwise approach. Same as in Scenario 1, we
observe an increase in the average conditional power, a
reduction in the variance of the conditional power, and a
conditional score benefit for effect sizes from D ¼ 0:3 (cf.
►Supplementary Tables S3 and S4 Columns 5–7, available
online only).

Throughout the different scenarios, all smoothing correc-
tions result in a slightly larger average conditional power as
well as they all reduce the variance in conditional power for
all considered effect sizes. Moreover, it can be seen that the
average sample size is increased. Sample size recalculation

with a smoothing correction decreases the variance in
sample size for a small selection of smoothing corrections
and effect sizes up to D ¼ 0:5 with multiplicity adjustment
according to O’Brien and Fleming.7 For multiplicity adjust-
ments according to Pocock8 or the selectedWang and Tsiatis9

boundaries, the recalculation area becomes smaller and the
variance in sample size is also decreased for higher effect
sizes. For effect sizes belowD ¼ 0:3 (for nmax ¼ 200) orD ¼ 0:4
(for nmax ¼ 150), the reduction of variance in sample size is
outweighed by the increase in average sample size, which
results in better conditional performance scores without
smoothing correction. For larger effect sizes, all five smooth-
ing corrections result usually in better conditional perfor-
mance scores, but also for smaller effect sizes most
smoothing corrections show a considerable benefit with
respect to variance reduction in sample size. Among the
smoothing corrections, overall, the stepwise smoothing cor-
rection turns out to be performing well or pointwise even
best with respect to average sample size and the conditional
performance score throughout the different effect sizes and
scenarios.

Application of Smoothing Corrections to a Medical
Example
To illustrate the presented methodology, we consider a
clinical study example. Bowden and Mander discussed clini-
cal trials where an adaption of the planned study designmay
become necessary as the assumed effect gained from a pilot
study might correspond to a low level of evidence.11 As an
example, they present a clinical trial scenario where the aim
is to compare a new versus standard treatment with respect
to the end point pain relief in osteoarthritis patients.11 Let us
assume that pain relief is measured on the McGill pain
scale12 ranging from 0 to 50 where higher values indicate
a worse pain and we assume the endpoint to be normally
distributed. We are interested in the difference between the
two groups with respect to short-term pain reduction from
baseline to 2 weeks of treatment. We assume that there
exists a small pilot study which supports the superiority of
the new intervention over the standard treatment with an
observed standardized effect of 0:4, which should be con-
firmed now. Therefore, we formulate the hypotheses as

H 0 : μI � μC � 0 and H 1 : μI � μC > 0;

where μI :¼ μI;baseline � μI;2 weeks refers to the pain reduction
within the 2 weeks in the intervention group and
μC :¼ μC;baseline � μC;2 weeks, respectively in the control group.
As the pilot studywas rather small, we decide on an adaptive
study designwith one interim analysis after n1 ¼ 50 patients
per group (half of the fixed sample size per group at D ¼ 0:4).
Thereby, we choose the inverse normal combination test4

with equal weights, a global one-sided significance level of
0:025 and locally adjusted significance levels according to
O’Brien and Fleming.7 The binding futility stopping bound is
set to cf ut ¼ 0:0: At interim, if the study is neither stopped for
futility nor for efficacy, the sample size is recalculated based
on the “restricted observed conditional power approach”
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combined with stepwise smoothing with a maximal sample
size of nmax ¼ 200 per group. Note that this refers to simula-
tion Scenario 1 where the performance results are given in
►Table 1.

At the interim analysis, the observed interim effect turns
out to be 0:2. Without the smoothing correction, the trial
would have been stopped for futility in this case. However,
for an observed interim effect of 0:228 and higher, the trial
would have continued with the maximal sample size, so the
result would be difficult to communicate to the investigator.
When applying sample size recalculation with stepwise
smoothing correction as anticipated here, then the study is
continued with a total sample size of 150 per group, and
hence offers the possibility of still showing a possibly clini-
cally relevant difference between the two treatments after
the second stage. This increase in sample corresponds to a
value midway of no increase (as suggested without smooth-
ing) and the maximal increase (as suggested for an effect
0:228 orhigher) and is thus relatively easy to communicate to
non-statisticians.

Discussion

When using an adaptive design with sample size recalcula-
tion, it seems intuitive that for small interim effects, no
increase of sample size is recommended (early stop for
futility). It also seems plausible that starting from a certain
value of the interim test statistic, an increase of sample size is
justified. However, the decision on this boundary cincr is
somehow arbitrary. To overcome this problem, we presented
five classes of simple smoothing corrections (linear, step-
wise, sigmoid, concave, and convex increase) to be combined
with existing recalculation rules to decrease the variability of
sample size and conditional power. These smoothing correc-
tions were applied to different first stage and maximal
sample sizes as well as different multiplicity adjustments
(Scenarios 1–5). Moreover, a clinical study example was
provided for illustration. Our main motivation to choose
the smoothing functions was to propose a simple approach
that does not need any analytical derivations. However, even
when focusing on these five simple smoothing classes, there
remain many possibilities of adaption for the specific func-
tion shapes. The intention of our work is to highlight the
general impact of a smoothing function in different scenari-
os, whereas the optimization of a specific function shapewill
be addressed in future work.

Conclusion

Our findings generally support the application of a smooth-
ing correction, in particular the stepwise smoothing ap-
proach, to achieve the aim of reducing the variability in
sample size and conditional power. These variability reduc-
tions are only one aspect of the performance for adaptive

sample size recalculation, whereas a correct target sample
size and power define the other perspective. The perfor-
mance score by Herrmann et al6 assessing both—variability
and location of power and sample size—shows an overall
benefit of smoothing corrections for medium and large effect
sizes. Generally, there is no globally optimal approach across
all effect sizes.

The R code underlying the simulations of this paper is
available on https://github.com/shareCH/SSR-smoothing-
corrections.
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Appendix A

The five simple smoothing options illustrated in ►Fig. 1 can be described mathematically by

• ntotal z1ð Þ ¼ ðnmax � n1Þ=cincr � z1 þ n1 for z1 � cfut; cincr
� �

;

for the linear function,

• ntotal z1ð Þ ¼
n1
ðnmax � n1Þ=3þ n1
2 � ðnmax � n1Þ=3þ n1

for z1�
cf ut; cincr=3
� �

;
cincr=3; 2 � cincr=3½ Þ;
2 � cincr=3; cincr½ Þ;

8<
: ;

8<
:

for the step function,

• ntotal z1ð Þ ¼ 0:5 � nmax�n1

0:5þe
10 � cincr

2 �z1ð Þ� �þ n1 for z1� cf ut; cincr
� �

;

for the sigmoid function,
• ntotal z1ð Þ ¼ n1�nmax

c2
incr

� z1 � cincrð Þ2 þ nmax for z1� cfut; cincr
� �

;

for the concave function and

• ntotal z1ð Þ ¼ nmax�n1
c2
incr

� z12 þ n1 for z1� cfut; cincr
� �

;

for the convex function.

The total sample size ntotal z1ð Þ for z1 � cincr ; cef f
� �

is determined according to the initially proposed sample size recalculation
rule.
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