Semin Respir Crit Care Med 2021; 42(02): 199-211
DOI: 10.1055/s-0040-1722290
Review Article

Evaluating the Right Ventricle in Acute and Chronic Pulmonary Embolism: Current and Future Considerations

Siddharth Singh
1   Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
,
Michael I. Lewis
2   Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, California
› Author Affiliations

Abstract

The right ventricle (RV), due to its morphologic and physiologic differences, is susceptible to sudden increase in RV afterload, as noted in patients with acute pulmonary embolism (PE). Functional impairment of RV function is a stronger presage of adverse outcomes in acute PE than the location or burden of emboli. While current iterations of most clinical prognostic scores do not incorporate RV dysfunction, advancements in imaging have enabled more granular and accurate assessment of RV dysfunction in acute PE. RV enlargement and dysfunction on imaging is noted only in a subset of patients with acute PE and is dependent on underlying cardiopulmonary reserve and clot burden. Specific signs like McConnell's and “60/60” sign are noted in less than 20% of patients with acute PE. About 2% of patients with acute PE develop chronic thromboembolic pulmonary hypertension, characterized by continued deterioration in RV function in a subset of patients with a continuum of RV function from preserved to overt right heart failure. Advances in molecular and other imaging will help better characterize RV dysfunction in this population and evaluate the response to therapies.



Publication History

Article published online:
06 February 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Ho SY, Nihoyannopoulos P. Anatomy, echocardiography, and normal right ventricular dimensions. Heart 2006; 92 (Suppl. 01) i2-i13
  • 2 Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, Part I: Anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 2008; 117 (11) 1436-1448
  • 3 Konstam MA, Kiernan MS, Bernstein D. et al; American Heart Association Council on Clinical Cardiology; Council on Cardiovascular Disease in the Young; and Council on Cardiovascular Surgery and Anesthesia. Evaluation and management of right-sided heart failure: a scientific statement from the American Heart Association. Circulation 2018; 137 (20) e578-e622
  • 4 Matthews JC, McLaughlin V. Acute right ventricular failure in the setting of acute pulmonary embolism or chronic pulmonary hypertension: a detailed review of the pathophysiology, diagnosis, and management. Curr Cardiol Rev 2008; 4 (01) 49-59
  • 5 Pinsky MR. The right ventricle: interaction with the pulmonary circulation. Crit Care 2016; 20: 266
  • 6 Chin KM, Kim NH, Rubin LJ. The right ventricle in pulmonary hypertension. Coron Artery Dis 2005; 16 (01) 13-18
  • 7 Guazzi M, Naeije R. Pulmonary hypertension in heart failure: pathophysiology, pathobiology, and emerging clinical perspectives. J Am Coll Cardiol 2017; 69 (13) 1718-1734
  • 8 McIntyre KM, Sasahara AA. The hemodynamic response to pulmonary embolism in patients without prior cardiopulmonary disease. Am J Cardiol 1971; 28 (03) 288-294
  • 9 McIntyre KM, Sasahara AA. The ratio of pulmonary arterial pressure to pulmonary vascular obstruction: index of preembolic cardiopulmonary status. Chest 1977; 71 (06) 692-697
  • 10 Bryce YC, Perez-Johnston R, Bryce EB, Homayoon B, Santos-Martin EG. Pathophysiology of right ventricular failure in acute pulmonary embolism and chronic thromboembolic pulmonary hypertension: a pictorial essay for the interventional radiologist. Insights Imaging 2019; 10 (01) 18
  • 11 Fineberg MH, Wiggers CJ. Compensation and failure of the right ventricle. Am Heart J 1936; 11: 255-263
  • 12 Nithianandan H, Reilly A, Tritschler T, Wells P. Applying rigorous eligibility criteria to studies evaluating prognostic utility of serum biomarkers in pulmonary embolism: a systematic review and meta-analysis. Thromb Res 2020; 195: 195-208
  • 13 Hellenkamp K, Pruszczyk P, Jiménez D. et al. Prognostic impact of copeptin in pulmonary embolism: a multicentre validation study. Eur Respir J 2018; 51 (04) 51
  • 14 Rodger M, Makropoulos D, Turek M. et al. Diagnostic value of the electrocardiogram in suspected pulmonary embolism. Am J Cardiol 2000; 86 (07) 807-809 , A10
  • 15 Kjaergaard J, Schaadt BK, Lund JO, Hassager C. Quantification of right ventricular function in acute pulmonary embolism: relation to extent of pulmonary perfusion defects. Eur J Echocardiogr 2008; 9 (05) 641-645
  • 16 Kukla P, McIntyre WF, Fijorek K. et al. Use of ischemic ECG patterns for risk stratification in intermediate-risk patients with acute PE. Am J Emerg Med 2014; 32 (10) 1248-1252
  • 17 Roy PM, Colombet I, Durieux P, Chatellier G, Sors H, Meyer G. Systematic review and meta-analysis of strategies for the diagnosis of suspected pulmonary embolism. BMJ 2005; 331 (7511): 259
  • 18 Kurnicka K, Lichodziejewska B, Goliszek S. et al. Echocardiographic pattern of acute pulmonary embolism: analysis of 511 consecutive patients. J Am Soc Echocardiogr 2016; 29 (09) 907-913
  • 19 Levitov A, Frankel HL, Blaivas M. et al. Guidelines for the appropriate use of bedside general and cardiac ultrasonography in the evaluation of critically ill patients---Part II: Cardiac ultrasonography. Crit Care Med 2016; 44 (06) 1206-1227
  • 20 Laursen CB, Sloth E, Lassen AT. et al. Point-of-care ultrasonography in patients admitted with respiratory symptoms: a single-blind, randomised controlled trial. Lancet Respir Med 2014; 2 (08) 638-646
  • 21 Saric M, Armour AC, Arnaout MS. et al. Guidelines for the use of echocardiography in the evaluation of a cardiac source of embolism. J Am Soc Echocardiogr 2016; 29 (01) 1-42
  • 22 Konstantinides SV. 2014 ESC Guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J 2014; 35 (45) 3145-3146
  • 23 Fields JM, Davis J, Girson L. et al. Transthoracic echocardiography for diagnosing pulmonary embolism: a systematic review and meta-analysis. J Am Soc Echocardiogr 2017; 30 (07) 714-723.e4
  • 24 Chen JY, Chao TH, Guo YL. et al. A simplified clinical model to predict pulmonary embolism in patients with acute dyspnea. Int Heart J 2006; 47 (02) 259-271
  • 25 Lodato JA, Ward RP, Lang RM. Echocardiographic predictors of pulmonary embolism in patients referred for helical CT. Echocardiography 2008; 25 (06) 584-590
  • 26 Miniati M, Monti S, Pratali L. et al. Value of transthoracic echocardiography in the diagnosis of pulmonary embolism: results of a prospective study in unselected patients. Am J Med 2001; 110 (07) 528-535
  • 27 Bova C, Greco F, Misuraca G. et al. Diagnostic utility of echocardiography in patients with suspected pulmonary embolism. Am J Emerg Med 2003; 21 (03) 180-183
  • 28 Daley J, Grotberg J, Pare J. et al. Emergency physician performed tricuspid annular plane systolic excursion in the evaluation of suspected pulmonary embolism. Am J Emerg Med 2017; 35 (01) 106-111
  • 29 Dresden S, Mitchell P, Rahimi L. et al. Right ventricular dilatation on bedside echocardiography performed by emergency physicians aids in the diagnosis of pulmonary embolism. Ann Emerg Med 2014; 63 (01) 16-24
  • 30 Lang RM, Badano LP, Mor-Avi V. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28 (01) 1-39.e14
  • 31 King ME, Braun H, Goldblatt A, Liberthson R, Weyman AE. Interventricular septal configuration as a predictor of right ventricular systolic hypertension in children: a cross-sectional echocardiographic study. Circulation 1983; 68 (01) 68-75
  • 32 Pruszczyk P, Goliszek S, Lichodziejewska B. et al. Prognostic value of echocardiography in normotensive patients with acute pulmonary embolism. JACC Cardiovasc Imaging 2014; 7 (06) 553-560
  • 33 Mertens LL, Friedberg MK. Imaging the right ventricle--current state of the art. Nat Rev Cardiol 2010; 7 (10) 551-563
  • 34 McConnell MV, Solomon SD, Rayan ME, Come PC, Goldhaber SZ, Lee RT. Regional right ventricular dysfunction detected by echocardiography in acute pulmonary embolism. Am J Cardiol 1996; 78 (04) 469-473
  • 35 Mediratta A, Addetia K, Medvedofsky D, Gomberg-Maitland M, Mor-Avi V, Lang RM. Echocardiographic diagnosis of acute pulmonary embolism in patients with McConnell's sign. Echocardiography 2016; 33 (05) 696-702
  • 36 Wright L, Dwyer N, Power J, Kritharides L, Celermajer D, Marwick TH. Right ventricular systolic function responses to acute and chronic pulmonary hypertension: assessment with myocardial deformation. J Am Soc Echocardiogr 2016; 29 (03) 259-266
  • 37 Torbicki A, Galié N, Covezzoli A, Rossi E, De Rosa M, Goldhaber SZ. ICOPER Study Group. Right heart thrombi in pulmonary embolism: results from the International Cooperative Pulmonary Embolism Registry. J Am Coll Cardiol 2003; 41 (12) 2245-2251
  • 38 Vitarelli A, Barillà F, Capotosto L. et al. Right ventricular function in acute pulmonary embolism: a combined assessment by three-dimensional and speckle-tracking echocardiography. J Am Soc Echocardiogr 2014; 27 (03) 329-338
  • 39 Platz E, Hassanein AH, Shah A, Goldhaber SZ, Solomon SD. Regional right ventricular strain pattern in patients with acute pulmonary embolism. Echocardiography 2012; 29 (04) 464-470
  • 40 Trivedi SJ, Terluk AD, Kritharides L. et al. Right ventricular speckle tracking strain echocardiography in patients with acute pulmonary embolism. Int J Cardiovasc Imaging 2020; 36 (05) 865-872
  • 41 Kanar BG, Göl G, Oğur E, Kavas M, Ataş H, Mutlu B. Assessment of right ventricular function and relation to mortality after acute pulmonary embolism: a speckle tracking echocardiography-based study. Echocardiography 2019; 36 (07) 1298-1305
  • 42 Lee K, Kwon O, Lee EJ. et al. Prognostic value of echocardiographic parameters for right ventricular function in patients with acute non-massive pulmonary embolism. Heart Vessels 2019; 34 (07) 1187-1195
  • 43 Konstantinides SV, Meyer G. The 2019 ESC Guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J 2019; 40 (42) 3453-3455
  • 44 Barco S, Mahmoudpour SH, Planquette B, Sanchez O, Konstantinides SV, Meyer G. Prognostic value of right ventricular dysfunction or elevated cardiac biomarkers in patients with low-risk pulmonary embolism: a systematic review and meta-analysis. Eur Heart J 2019; 40 (11) 902-910
  • 45 Schoepf UJ, Kucher N, Kipfmueller F, Quiroz R, Costello P, Goldhaber SZ. Right ventricular enlargement on chest computed tomography: a predictor of early death in acute pulmonary embolism. Circulation 2004; 110 (20) 3276-3280
  • 46 Coutance G, Cauderlier E, Ehtisham J, Hamon M, Hamon M. The prognostic value of markers of right ventricular dysfunction in pulmonary embolism: a meta-analysis. Crit Care 2011; 15 (02) R103
  • 47 Cho JH, Kutti Sridharan G, Kim SH. et al. Right ventricular dysfunction as an echocardiographic prognostic factor in hemodynamically stable patients with acute pulmonary embolism: a meta-analysis. BMC Cardiovasc Disord 2014; 14: 64
  • 48 Bova C, Sanchez O, Prandoni P. et al. Identification of intermediate-risk patients with acute symptomatic pulmonary embolism. Eur Respir J 2014; 44 (03) 694-703
  • 49 Lobo JL, Holley A, Tapson V. et al; PROTECT and RIETE investigators. Prognostic significance of tricuspid annular displacement in normotensive patients with acute symptomatic pulmonary embolism. J Thromb Haemost 2014; 12 (07) 1020-1027
  • 50 Barrios D, Rosa-Salazar V, Morillo R. et al. Prognostic significance of right heart thrombi in patients with acute symptomatic pulmonary embolism: systematic review and meta-analysis. Chest 2017; 151 (02) 409-416
  • 51 Yuriditsky E, Mitchell OJ, Sibley RA. et al. Low left ventricular outflow tract velocity time integral is associated with poor outcomes in acute pulmonary embolism. Vasc Med 2020; 25 (02) 133-140
  • 52 Yuriditsky E, Mitchell OJL, Sista AK. et al. Right ventricular stroke distance predicts death and clinical deterioration in patients with pulmonary embolism. Thromb Res 2020; 195: 29-34
  • 53 Meinel FG, Nance Jr JW, Schoepf UJ. et al. Predictive value of computed tomography in acute pulmonary embolism: systematic review and meta-analysis. Am J Med 2015; 128 (07) 747-59.e2
  • 54 Côté B, Jiménez D, Planquette B. et al. Prognostic value of right ventricular dilatation in patients with low-risk pulmonary embolism. Eur Respir J 2017; 50 (06) 50
  • 55 Kang DK, Thilo C, Schoepf UJ. et al. CT signs of right ventricular dysfunction: prognostic role in acute pulmonary embolism. JACC Cardiovasc Imaging 2011; 4 (08) 841-849
  • 56 van der Bijl N, Klok FA, Huisman MV. et al. Measurement of right and left ventricular function by ECG-synchronized CT scanning in patients with acute pulmonary embolism: usefulness for predicting short-term outcome. Chest 2011; 140 (04) 1008-1015
  • 57 Dorfmüller P, Günther S, Ghigna MR. et al. Microvascular disease in chronic thromboembolic pulmonary hypertension: a role for pulmonary veins and systemic vasculature. Eur Respir J 2014; 44 (05) 1275-1288
  • 58 Bonderman D, Wilkens H, Wakounig S. et al. Risk factors for chronic thromboembolic pulmonary hypertension. Eur Respir J 2009; 33 (02) 325-331
  • 59 Delcroix M, Vonk Noordegraaf A, Fadel E, Lang I, Simonneau G, Naeije R. Vascular and right ventricular remodelling in chronic thromboembolic pulmonary hypertension. Eur Respir J 2013; 41 (01) 224-232
  • 60 McCabe C, White PA, Hoole SP. et al. Right ventricular dysfunction in chronic thromboembolic obstruction of the pulmonary artery: a pressure-volume study using the conductance catheter. J Appl Physiol (1985) 2014; 116 (04) 355-363
  • 61 Drake JI, Bogaard HJ, Mizuno S. et al. Molecular signature of a right heart failure program in chronic severe pulmonary hypertension. Am J Respir Cell Mol Biol 2011; 45 (06) 1239-1247
  • 62 Vonk-Noordegraaf A, Haddad F, Chin KM. et al. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol 2013; 62 (25) D22-D33
  • 63 Spruijt OA, de Man FS, Groepenhoff H. et al. The effects of exercise on right ventricular contractility and right ventricular-arterial coupling in pulmonary hypertension. Am J Respir Crit Care Med 2015; 191 (09) 1050-1057
  • 64 Ryan JJ, Huston J, Kutty S. et al. Right ventricular adaptation and failure in pulmonary arterial hypertension. Can J Cardiol 2015; 31 (04) 391-406
  • 65 Bogaard HJ, Natarajan R, Henderson SC. et al. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation 2009; 120 (20) 1951-1960
  • 66 Voelkel NF, Gomez-Arroyo J, Abbate A, Bogaard HJ. Mechanisms of right heart failure---a work in progress and a plea for failure prevention. Pulm Circ 2013; 3 (01) 137-143
  • 67 Rain S, Handoko ML, Trip P. et al. Right ventricular diastolic impairment in patients with pulmonary arterial hypertension. Circulation 2013; 128 (18) 2016-2025 , 1–10
  • 68 Murch SD, La Gerche A, Roberts TJ, Prior DL, MacIsaac AI, Burns AT. Abnormal right ventricular relaxation in pulmonary hypertension. Pulm Circ 2015; 5 (02) 370-375
  • 69 Trip P, Kind T, van de Veerdonk MC. et al. Accurate assessment of load-independent right ventricular systolic function in patients with pulmonary hypertension. J Heart Lung Transplant 2013; 32 (01) 50-55
  • 70 Lowensohn HS, Khouri EM, Gregg DE, Pyle RL, Patterson RE. Phasic right coronary artery blood flow in conscious dogs with normal and elevated right ventricular pressures. Circ Res 1976; 39 (06) 760-766
  • 71 Reesink HJ, Marcus JT, Tulevski II. et al. Reverse right ventricular remodeling after pulmonary endarterectomy in patients with chronic thromboembolic pulmonary hypertension: utility of magnetic resonance imaging to demonstrate restoration of the right ventricle. J Thorac Cardiovasc Surg 2007; 133 (01) 58-64
  • 72 van Wolferen SA, Marcus JT, Boonstra A. et al. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J 2007; 28 (10) 1250-1257
  • 73 Jaïs X, D'Armini AM, Jansa P. et al; Bosentan Effects in iNopErable Forms of chronIc Thromboembolic pulmonary hypertension Study Group. Bosentan for treatment of inoperable chronic thromboembolic pulmonary hypertension: BENEFiT (Bosentan Effects in iNopErable Forms of chronIc Thromboembolic pulmonary hypertension), a randomized, placebo-controlled trial. J Am Coll Cardiol 2008; 52 (25) 2127-2134
  • 74 Rubin LJ, Badesch DB, Barst RJ. et al. Bosentan therapy for pulmonary arterial hypertension. N Engl J Med 2002; 346 (12) 896-903
  • 75 Sutendra G, Dromparis P, Paulin R. et al. A metabolic remodeling in right ventricular hypertrophy is associated with decreased angiogenesis and a transition from a compensated to a decompensated state in pulmonary hypertension. J Mol Med (Berl) 2013; 91 (11) 1315-1327
  • 76 Potus F, Ruffenach G, Dahou A. et al. Downregulation of microRNA-126 contributes to the failing right ventricle in pulmonary arterial hypertension. Circulation 2015; 132 (10) 932-943
  • 77 van de Veerdonk MC, Bogaard HJ, Voelkel NF. The right ventricle and pulmonary hypertension. Heart Fail Rev 2016; 21 (03) 259-271
  • 78 Otsuki S, Sawada H, Yodoya N. et al. Potential contribution of phenotypically modulated smooth muscle cells and related inflammation in the development of experimental obstructive pulmonary vasculopathy in rats. PLoS One 2015; 10 (02) e0118655
  • 79 Talati M, Hemnes A. Fatty acid metabolism in pulmonary arterial hypertension: role in right ventricular dysfunction and hypertrophy. Pulm Circ 2015; 5 (02) 269-278
  • 80 Zungu-Edmondson M, Shults NV, Wong CM, Suzuki YJ. Modulators of right ventricular apoptosis and contractility in a rat model of pulmonary hypertension. Cardiovasc Res 2016; 110 (01) 30-39
  • 81 Ahmadi A, Ohira H, Mielniczuk LM. FDG PET imaging for identifying pulmonary hypertension and right heart failure. Curr Cardiol Rep 2015; 17 (01) 555
  • 82 Held M, Kolb P, Grün M. et al. Functional characterization of patients with chronic thromboembolic disease. Respiration 2016; 91 (06) 503-509
  • 83 Kim NH, Delcroix M, Jais X. et al. Chronic thromboembolic pulmonary hypertension. Eur Respir J 2019; 53 (01) 53
  • 84 Riedel M, Stanek V, Widimsky J, Prerovsky I. Long term follow-up of patients with pulmonary thromboembolism. Late prognosis and evolution of hemodynamic and respiratory data. Chest 1982; 81 (02) 151-158
  • 85 Simonneau G, Torbicki A, Dorfmüller P, Kim N. The pathophysiology of chronic thromboembolic pulmonary hypertension. Eur Respir Rev 2017; 26 (143) 26
  • 86 Dzikowska-Diduch O, Kostrubiec M, Kurnicka K. et al. “The post-pulmonary syndrome - results of echocardiographic driven follow up after acute pulmonary embolism”. Thromb Res 2020; 186: 30-35
  • 87 Sanz J, Kuschnir P, Rius T. et al. Pulmonary arterial hypertension: noninvasive detection with phase-contrast MR imaging. Radiology 2007; 243 (01) 70-79
  • 88 Waziri F, Ringgaard S, Mellemkjær S. et al. Long-term changes of right ventricular myocardial deformation and remodeling studied by cardiac magnetic resonance imaging in patients with chronic thromboembolic pulmonary hypertension following pulmonary thromboendarterectomy. Int J Cardiol 2020; 300: 282-288
  • 89 Surie S, Bouma BJ, Bruin-Bon RA. et al. Time course of restoration of systolic and diastolic right ventricular function after pulmonary endarterectomy for chronic thromboembolic pulmonary hypertension. Am Heart J 2011; 161 (06) 1046-1052
  • 90 Braams NJ, Ruigrok D, Schokker MGM. et al. Pulmonary vascular imaging characteristics after pulmonary endarterectomy for chronic thromboembolic pulmonary hypertension. J Heart Lung Transplant 2020; 39 (03) 248-256
  • 91 Li AL, Zhai ZG, Zhai YN, Xie WM, Wan J, Tao XC. The value of speckle-tracking echocardiography in identifying right heart dysfunction in patients with chronic thromboembolic pulmonary hypertension. Int J Cardiovasc Imaging 2018; 34 (12) 1895-1904
  • 92 MacNee W. Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part One. Am J Respir Crit Care Med 1994; 150 (03) 833-852
  • 93 Buckberg G, Hoffman JI. Right ventricular architecture responsible for mechanical performance: unifying role of ventricular septum. J Thorac Cardiovasc Surg 2014; 148 (06) 3166-71.e1-3166-71.e4