Aktuelle Rheumatologie 2016; 41(05): 396-404
DOI: 10.1055/s-0041-109890
Übersichtsarbeit
Georg Thieme Verlag KG Stuttgart · New York

Genetische Arthropathien und Skelettdysplasien: Differenzialdiagnosen bei schmerzhaften und kontrakten Gelenken

Genetic Arthropathy and Skeletal Dysplasia: Differential Diagnosis in Painful and Contracted Joints
R. Häfner
,
J.-P. Haas
Further Information

Publication History

Publication Date:
18 December 2015 (online)

Zusammenfassung

In der differenzialdiagnostischen Abklärung von Arthralgien und/oder Arthropathien bei Kindern und Jugendlichen sind auch einige z. T. sehr seltene monogenetische Erkrankungen in Betracht zu ziehen. Zunächst autoinflammatorische Erkrankungen wie das Cryopyrin assoziierte periodische Syndrom (CAPS), die pyogene Arthritis mit Pyoderma gangränosum und Akne (PAPA-Syndrom) und die Infantile Sarkoidose (Blau Syndrom); darüber hinaus genetisch bedingte Veränderungen in Regulations- und Strukturgenen des Bindegewebes wie die Progressive Pseudorheumatische Arthropathie des Kindesalters (PPAC), das Camptodaktylie-Arthropathie-Coxa vara-Perikarditis-(CACP) – Syndrom, die Multizentrische Carpotarsale Osteolyse (MCTO), die Spondyloenchondrodysplasie (SPENCD) und das Camurati-Engelmann Syndrom (CAEND). Die Vorliegende Übersicht im Rahmen des Schwerpunktheftes gibt einen Überblick über diese seltenen Erkrankungen.

Abstract

The diagnostic workup of arthralgia and/or arthropathy in children and adolescents includes the differential diagnosis of some very rare diseases with monogenetic inheritance. The first group to be considered includes autoinflammatory diseases such as the cryopyrin-associated periodic syndrome (CAPS), pyogenic arthritis with pyoderma gangraenosum and acne (PAPA syndrome) and infantile sarcoidosis (Blau syndrome). Moreover, there are mutations in genes responsible for regulatory and/or structural elements of connective tissue like progressive pseudorheumatic arthropathy of childhood (PPAC), the camptodactyly-arthropathy-coxa vara-pericarditis (CACP) syndrome, multicentric carpotarsal osteolysis (MCTO), spondyloenchondrodysplasia (SPENCD) and the Camurati-Engelmann syndrome (CAEND). This review, which is part of a special issue focussing on rare genetic diseases involving the joints, gives an overview of these rare diseases.

 
  • Literatur

  • 1 Haas JP. Chronische muskuloskeletale Schmerzen bei Kindern und Jugendlichen. Monatsschr Kinderheilkd 2009; 157: 647-654
  • 2 Hedrich CM, Bruck N, Paul D et al. „Mutation negative“ familial cold autoinflammatory syndrome (FCAS) in an 8-year-old boy: clinical course and functional studies. Rheumatology international 2012; 32: 2629-2636
  • 3 Kummerle-Deschner JB, Tyrrell PN, Reess F et al. Risk factors for severe Muckle-Wells syndrome. Arthritis and rheumatism 2010; 62: 3783-3791
  • 4 Prieur AM, Griscelli C, Lampert F et al. A chronic, infantile, neurological, cutaneous and articular (CINCA) syndrome. A specific entity analysed in 30 patients. Scandinavian journal of rheumatology Supplement 1987; 66: 57-68
  • 5 Dollfus H, Hafner R, Hofmann HM et al. Chronic infantile neurological cutaneous and articular/neonatal onset multisystem inflammatory disease syndrome: ocular manifestations in a recently recognized chronic inflammatory disease of childhood. Archives of ophthalmology 2000; 118: 1386-1392
  • 6 de Jesus AA, Canna SW, Liu Y et al. Molecular mechanisms in genetically defined autoinflammatory diseases: disorders of amplified danger signaling. Annual review of immunology 2015; 33: 823-874
  • 7 Stew BT, Fishpool SJ, Owens D et al. Muckle-Wells syndrome: a treatable cause of congenital sensorineural hearing loss. B-Ent 2013; 9: 161-163
  • 8 Hill SC, Namde M, Dwyer A et al. Arthropathy of neonatal onset multisystem inflammatory disease (NOMID/CINCA). Pediatric radiology 2007; 37: 145-152
  • 9 Wittkowski H, Kuemmerle-Deschner JB, Austermann J et al. MRP8 and MRP14, phagocyte-specific danger signals, are sensitive biomarkers of disease activity in cryopyrin-associated periodic syndromes. Annals of the rheumatic diseases 2011; 70: 2075-2081
  • 10 Kuemmerle-Deschner JB, Ramos E, Blank N et al. Canakinumab (ACZ885, a fully human IgG1 anti-IL-1beta mAb) induces sustained remission in pediatric patients with cryopyrin-associated periodic syndrome (CAPS). Arthritis research & therapy 2011; 13: R34
  • 11 Goldbach-Mansky R. Blocking interleukin-1 in rheumatic diseases. Annals of the New York Academy of Sciences 2009; 1182: 111-123
  • 12 Caorsi R, Lepore L, Zulian F et al. The schedule of administration of canakinumab in cryopyrin associated periodic syndrome is driven by the phenotype severity rather than the age. Arthritis research & therapy 2013; 15: R33
  • 13 Neven B, Marvillet I, Terrada C et al. Long-term efficacy of the interleukin-1 receptor antagonist anakinra in ten patients with neonatal-onset multisystem inflammatory disease/chronic infantile neurologic, cutaneous, articular syndrome. Arthritis and rheumatism 2010; 62: 258-267
  • 14 Miceli-Richard C, Lesage S, Rybojad M et al. CARD15 mutations in Blau syndrome. Nature genetics 2001; 29: 19-20
  • 15 Rose CD, Martin TM, Wouters CH. Blau syndrome revisited. Current opinion in rheumatology 2011; 23: 411-418
  • 16 Hafner R, Vogel P. Sarcoidosis of early onset. A challenge for the pediatric rheumatologist. Clinical and experimental rheumatology 1993; 11: 685-691
  • 17 Janssen CE, Rose CD, De Hertogh G et al. Morphologic and immunohistochemical characterization of granulomas in the nucleotide oligomerization domain 2-related disorders Blau syndrome and Crohn disease. The Journal of allergy and clinical immunology 2012; 129: 1076-1084
  • 18 Arostegui JI, Arnal C, Merino R et al. NOD2 gene-associated pediatric granulomatous arthritis: clinical diversity, novel and recurrent mutations, and evidence of clinical improvement with interleukin-1 blockade in a Spanish cohort. Arthritis and rheumatism 2007; 56: 3805-3813
  • 19 Otsubo Y, Okafuji I, Shimizu T et al. A long-term follow-up of Japanese mother and her daughter with Blau syndrome: Effective treatment of anti-TNF inhibitors and useful diagnostic tool of joint ultrasound examination. Modern rheumatology/the Japan Rheumatism Association 2014; DOI: 10.3109/14397595.2014.964388. 1-5
  • 20 Almeida de Jesus A, Goldbach-Mansky R. Monogenic autoinflammatory diseases: concept and clinical manifestations. Clinical immunology 2013; 147: 155-174
  • 21 Marcos T, Ruiz-Martin V, de la Puerta ML et al. Proline-serine-threonine phosphatase interacting protein 1 inhibition of T-cell receptor signaling depends on its SH3 domain. The FEBS journal 2014; 281: 3844-3854
  • 22 Braun-Falco M, Ruzicka T. Skin manifestations in autoinflammatory syndromes. Journal der Deutschen Dermatologischen Gesellschaft=Journal of the German Society of Dermatology: JDDG 2011; 9: 232-246
  • 23 Demidowich AP, Freeman AF, Kuhns DB et al. Brief report: genotype, phenotype, and clinical course in five patients with PAPA syndrome (pyogenic sterile arthritis, pyoderma gangrenosum, and acne). Arthritis and rheumatism 2012; 64: 2022-2027
  • 24 Ter Haar N, Lachmann H, Ozen S et al. Paediatric Rheumatology International Trials O, the Eurofever/Eurotraps P. Treatment of autoinflammatory diseases: results from the Eurofever Registry and a literature review. Annals of the rheumatic diseases 2013; 72: 678-685
  • 25 Brenner M, Ruzicka T, Plewig G et al. Targeted treatment of pyoderma gangrenosum in PAPA (pyogenic arthritis, pyoderma gangrenosum and acne) syndrome with the recombinant human interleukin-1 receptor antagonist anakinra. The British journal of dermatology 2009; 161: 1199-1201
  • 26 Spranger J, Albert C, Schilling F et al. Progressive pseudorheumatoid arthropathy of childhood (PPAC): a hereditary disorder simulating juvenile rheumatoid arthritis. American journal of medical genetics 1983; 14: 399-401
  • 27 Hurvitz JR, Suwairi WM, Van Hul W et al. Mutations in the CCN gene family member WISP3 cause progressive pseudorheumatoid dysplasia. Nature genetics 1999; 23: 94-98
  • 28 Häfner R. Röntgenologisch erkennbare Differenzialdiagnosen zur juvenilen idiopathischen Arthritis. Akt Rheumatol 2012; 37: 98-104
  • 29 Kozlowski K, Kennedy J, Lewis IC. Radiographic features of progressive pseudorheumatoid arthritis. Australasian radiology 1986; 30: 244-250
  • 30 Bahabri SA, Suwairi WM, Laxer RM et al. The camptodactyly-arthropathy-coxa vara-pericarditis syndrome: clinical features and genetic mapping to human chromosome 1. Arthritis and rheumatism 1998; 41: 730-735
  • 31 Faivre L, Prieur AM, Le Merrer M et al. Clinical variability and genetic homogeneity of the camptodactyly-arthropathy-coxa vara-pericarditis syndrome. American journal of medical genetics 2000; 95: 233-236
  • 32 Offiah AC, Woo P, Prieur AM et al. Camptodactyly-arthropathy-coxa vara-pericarditis syndrome versus juvenile idiopathic arthropathy. AJR American journal of roentgenology 2005; 185: 522-529
  • 33 Hugosson C, Bahabri S, McDonald P et al. Radiological features in congenital camptodactyly, familial arthropathy and coxa vara syndrome. Pediatric radiology 1994; 24: 523-526
  • 34 Mumm S, Huskey M, Duan S et al. Multicentric carpotarsal osteolysis syndrome is caused by only a few domain-specific mutations in MAFB, a negative regulator of RANKL-induced osteoclastogenesis. American journal of medical genetics Part A 2014; 164A: 2287-2293
  • 35 Zankl A, Duncan EL, Leo PJ et al. Multicentric carpotarsal osteolysis is caused by mutations clustering in the amino-terminal transcriptional activation domain of MAFB. American journal of human genetics 2012; 90: 494-501
  • 36 Lausch E, Janecke A, Bros M et al. Genetic deficiency of tartrate-resistant acid phosphatase associated with skeletal dysplasia, cerebral calcifications and autoimmunity. Nature genetics 2011; 43: 132-137
  • 37 Renella R, Schaefer E, LeMerrer M et al. Spondyloenchondrodysplasia with spasticity, cerebral calcifications, and immune dysregulation: clinical and radiographic delineation of a pleiotropic disorder. American journal of medical genetics Part A 2006; 140: 541-550
  • 38 Schorr S, Legum C, Ochshorn M. Spondyloenchondrodysplasia. Enchondromatomosis with severe platyspondyly in two brothers. Radiology 1976; 118: 133-139
  • 39 Janssens K, Vanhoenacker F, Bonduelle M et al. Camurati-Engelmann disease: review of the clinical, radiological, and molecular data of 24 families and implications for diagnosis and treatment. Journal of medical genetics 2006; 43: 1-11
  • 40 Janssens K, Gershoni-Baruch R, Guanabens N et al. Mutations in the gene encoding the latency-associated peptide of TGF-beta 1 cause Camurati-Engelmann disease. Nature genetics 2000; 26: 273-275
  • 41 Vanhoenacker FM, Janssens K, Van Hul W et al. Camurati-Engelmann disease. Review of radioclinical features. Acta radiologica 2003; 44: 430-434
  • 42 Heymans O, Gebhart M, Alexiou J et al. Camurati-Engelmann disease. Effects of corticosteroids. Acta clinica Belgica 1998; 53: 189-192