Semin Thromb Hemost 2021; 47(02): 161-173
DOI: 10.1055/s-0041-1722862
Review Article

Gene Therapy for Inherited Bleeding Disorders

Valder R. Arruda
1   Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
2   Department of Pediatrics, Division of Hematology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
3   Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania
,
Jesse Weber
2   Department of Pediatrics, Division of Hematology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
,
Benjamin J. Samelson-Jones
1   Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
2   Department of Pediatrics, Division of Hematology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
3   Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania
› Author Affiliations
Funding This work was supported by grants from National Heart, Lung, and Blood Institute (U54-HL142012K08 and P01- HL139420 to V.R.A and K08-HL140078 B.J.S.-J.).

Abstract

Decades of preclinical and clinical studies developing gene therapy for hemophilia are poised to bear fruit with current promising pivotal studies likely to lead to regulatory approval. However, this recent success should not obscure the multiple challenges that were overcome to reach this destination. Gene therapy for hemophilia A and B benefited from advancements in the general gene therapy field, such as the development of adeno-associated viral vectors, as well as disease-specific breakthroughs, like the identification of B-domain deleted factor VIII and hyperactive factor IX Padua. The gene therapy field has also benefited from hemophilia B clinical studies, which revealed for the first time critical safety concerns related to immune responses to the vector capsid not anticipated in preclinical models. Preclinical studies have also investigated gene transfer approaches for other rare inherited bleeding disorders, including factor VII deficiency, von Willebrand disease, and Glanzmann thrombasthenia. Here we review the successful gene therapy journey for hemophilia and pose some unanswered questions. We then discuss the current state of gene therapy for these other rare inherited bleeding disorders and how the lessons of hemophilia gene therapy may guide clinical development.



Publication History

Article published online:
26 February 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Peyvandi F, Kunicki T, Lillicrap D. Genetic sequence analysis of inherited bleeding diseases. Blood 2013; 122 (20) 3423-3431
  • 2 Mariani G, Bernardi F. Factor VII deficiency. Semin Thromb Hemost 2009; 35 (04) 400-406
  • 3 Sharma R, Flood VH. Advances in the diagnosis and treatment of Von Willebrand disease. Blood 2017; 130 (22) 2386-2391
  • 4 Curnow J, Pasalic L, Favaloro EJ. Treatment of von Willebrand disease. Semin Thromb Hemost 2016; 42 (02) 133-146
  • 5 Nurden AT, Pillois X, Wilcox DA. Glanzmann thrombasthenia: state of the art and future directions. Semin Thromb Hemost 2013; 39 (06) 642-655
  • 6 Grainger JD, Thachil J, Will AM. How we treat the platelet glycoprotein defects; Glanzmann thrombasthenia and Bernard Soulier syndrome in children and adults. Br J Haematol 2018; 182 (05) 621-632
  • 7 Poon MC, Di Minno G, d'Oiron R, Zotz R. New insights into the treatment of Glanzmann thrombasthenia. Transfus Med Rev 2016; 30 (02) 92-99
  • 8 Palla R, Peyvandi F, Shapiro AD. Rare bleeding disorders: diagnosis and treatment. Blood 2015; 125 (13) 2052-2061
  • 9 Pipe SW. Delivering on the promise of gene therapy for haemophilia. Haemophilia 2020
  • 10 Nathwani AC. Gene therapy for hemophilia. Hematology (Am Soc Hematol Educ Program) 2019; 2019 (01) 1-8
  • 11 Vinjamur DS, Bauer DE, Orkin SH. Recent progress in understanding and manipulating haemoglobin switching for the haemoglobinopathies. Br J Haematol 2018; 180 (05) 630-643
  • 12 Hough C, Lillicrap D. Gene therapy for hemophilia: an imperative to succeed. J Thromb Haemost 2005; 3 (06) 1195-1205
  • 13 Doshi BS, Arruda VR. Gene therapy for hemophilia: what does the future hold?. Ther Adv Hematol 2018; 9 (09) 273-293
  • 14 Russell S, Bennett J, Wellman JA. et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 2017; 390 (10097): 849-860
  • 15 Mendell JR, Al-Zaidy S, Shell R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 2017; 377 (18) 1713-1722
  • 16 Du LM, Nurden P, Nurden AT. et al. Platelet-targeted gene therapy with human factor VIII establishes haemostasis in dogs with haemophilia A. Nat Commun 2013; 4: 2773
  • 17 Shi Q. Platelet-targeted gene therapy for hemophilia. Mol Ther Methods Clin Dev 2018; 9: 100-108
  • 18 Everett LA, Cleuren AC, Khoriaty RN, Ginsburg D. Murine coagulation factor VIII is synthesized in endothelial cells. Blood 2014; 123 (24) 3697-3705
  • 19 Fahs SA, Hille MT, Shi Q, Weiler H, Montgomery RR. A conditional knockout mouse model reveals endothelial cells as the principal and possibly exclusive source of plasma factor VIII. Blood 2014; 123 (24) 3706-3713
  • 20 Ayuso E, Mingozzi F, Bosch F. Production, purification and characterization of adeno-associated vectors. Curr Gene Ther 2010; 10 (06) 423-436
  • 21 Li C, Samulski RJ. Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet 2020; 21 (04) 255-272
  • 22 Sehara Y, Fujimoto KI, Ikeguchi K. et al. Persistent expression of dopamine-synthesizing enzymes 15 years after gene transfer in a primate model of Parkinson's Disease. Hum Gene Ther Clin Dev 2017; 28 (02) 74-79
  • 23 Nichols TC, Dillow AM, Franck HW. et al. Protein replacement therapy and gene transfer in canine models of hemophilia A, hemophilia B, von Willebrand disease, and factor VII deficiency. ILAR J 2009; 50 (02) 144-167
  • 24 Cantore A, Ranzani M, Bartholomae CC. et al. Liver-directed lentiviral gene therapy in a dog model of hemophilia B. Sci Transl Med 2015; 7 (277) 277ra28
  • 25 Merlin S, Cannizzo ES, Borroni E. et al. A novel platform for immune tolerance induction in hemophilia a mice. Mol Ther 2017; 25 (08) 1815-1830
  • 26 Merlin S, Famà R, Borroni E. et al. FVIII expression by its native promoter sustains long-term correction avoiding immune response in hemophilic mice. Blood Adv 2019; 3 (05) 825-838
  • 27 Sultana T, Zamborlini A, Cristofari G, Lesage P. Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet 2017; 18 (05) 292-308
  • 28 Hacein-Bey-Abina S, von Kalle C, Schmidt M. et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003; 348 (03) 255-256
  • 29 Howe SJ, Mansour MR, Schwarzwaelder K. et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 2008; 118 (09) 3143-3150
  • 30 Milone MC, O'Doherty U. Clinical use of lentiviral vectors. Leukemia 2018; 32 (07) 1529-1541
  • 31 Manco-Johnson MJ, Abshire TC, Shapiro AD. et al. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. N Engl J Med 2007; 357 (06) 535-544
  • 32 Johnson KA, Zhou ZY. Costs of care in hemophilia and possible implications of health care reform. Hematology (Am Soc Hematol Educ Program) 2011; 2011: 413-418
  • 33 Mazepa MA, Monahan PE, Baker JR, Riske BK, Soucie JM. US Hemophilia Treatment Center Network. Men with severe hemophilia in the United States: birth cohort analysis of a large national database. Blood 2016; 127 (24) 3073-3081
  • 34 DiMichele D. Inhibitor development in haemophilia B: an orphan disease in need of attention. Br J Haematol 2007; 138 (03) 305-315
  • 35 Male C, Andersson NG, Rafowicz A. et al. Inhibitor incidence in an unselected cohort of previously untreated patients with severe haemophilia B: a PedNet study. Haematologica 2020; 106 (01) 123-129
  • 36 Samelson-Jones BJ, Arruda VR. Translational potential of immune tolerance induction by AAV liver-directed factor VIII gene therapy for hemophilia A. Front Immunol 2020; 11 (618) 618
  • 37 Kay MA, Manno CS, Ragni MV. et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 2000; 24 (03) 257-261
  • 38 Manno CS, Chew AJ, Hutchison S. et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 2003; 101 (08) 2963-2972
  • 39 Arruda VR, Hagstrom JN, Deitch J. et al. Posttranslational modifications of recombinant myotube-synthesized human factor IX. Blood 2001; 97 (01) 130-138
  • 40 Herzog RW, Yang EY, Couto LB. et al. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nat Med 1999; 5 (01) 56-63
  • 41 Jiang H, Pierce GF, Ozelo MC. et al. Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Mol Ther 2006; 14 (03) 452-455
  • 42 Buchlis G, Podsakoff GM, Radu A. et al. Factor IX expression in skeletal muscle of a severe hemophilia B patient 10 years after AAV-mediated gene transfer. Blood 2012; 119 (13) 3038-3041
  • 43 Manno CS, Pierce GF, Arruda VR. et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12 (03) 342-347
  • 44 Nathwani AC, Tuddenham EGD, Rangarajan S. et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 2011; 365 (25) 2357-2365
  • 45 Nathwani AC, Reiss UM, Tuddenham EGD. et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med 2014; 371 (21) 1994-2004
  • 46 Samelson-Jones BJ, Arruda VR. Protein-engineered coagulation factors for hemophilia gene therapy. Mol Ther Methods Clin Dev 2018; 12: 184-201
  • 47 Simioni P, Tormene D, Tognin G. et al. X-linked thrombophilia with a mutant factor IX (factor IX Padua). N Engl J Med 2009; 361 (17) 1671-1675
  • 48 Samelson-Jones BJ, Finn JD, George LA, Camire RM, Arruda VR. Hyperactivity of factor IX Padua (R338L) depends on factor VIIIa cofactor activity. JCI Insight 2019; 5: 5
  • 49 Crudele JM, Finn JD, Siner JI. et al. AAV liver expression of FIX-Padua prevents and eradicates FIX inhibitor without increasing thrombogenicity in hemophilia B dogs and mice. Blood 2015; 125 (10) 1553-1561
  • 50 Finn JD, Nichols TC, Svoronos N. et al. The efficacy and the risk of immunogenicity of FIX Padua (R338L) in hemophilia B dogs treated by AAV muscle gene therapy. Blood 2012; 120 (23) 4521-4523
  • 51 French RA, Samelson-Jones BJ, Niemeyer GP. et al. Complete correction of hemophilia B phenotype by FIX-Padua skeletal muscle gene therapy in an inhibitor-prone dog model. Blood Adv 2018; 2 (05) 505-508
  • 52 Monahan PE, Sun J, Gui T. et al. Employing a gain-of-function factor IX variant R338L to advance the efficacy and safety of hemophilia B human gene therapy: preclinical evaluation supporting an ongoing adeno-associated virus clinical trial. Hum Gene Ther 2015; 26 (02) 69-81
  • 53 Cantore A, Nair N, Della Valle P. et al. Hyperfunctional coagulation factor IX improves the efficacy of gene therapy in hemophilic mice. Blood 2012; 120 (23) 4517-4520
  • 54 George LA, Sullivan SK, Giermasz A. et al. Hemophilia B gene therapy with a high-specific-activity factor IX variant. N Engl J Med 2017; 377 (23) 2215-2227
  • 55 Von Drygalski A, Giermasz A, Castaman G. et al. Etranacogene dezaparvovec (AMT-061 phase 2b): normal/near normal FIX activity and bleed cessation in hemophilia B. Blood Adv 2019; 3 (21) 3241-3247
  • 56 Miesbach W, Meijer K, Coppens M. et al. Gene therapy with adeno-associated virus vector 5-human factor IX in adults with hemophilia B. Blood 2018; 131 (09) 1022-1031
  • 57 Lind P, Larsson K, Spira J. et al. Novel forms of B-domain-deleted recombinant factor VIII molecules. Construction and biochemical characterization. Eur J Biochem 1995; 232 (01) 19-27
  • 58 Rangarajan S, Walsh L, Lester W. et al. AAV5-factor VIII gene transfer in severe hemophilia A. N Engl J Med 2017; 377 (26) 2519-2530
  • 59 Pasi KJ, Rangarajan S, Mitchell N. et al. Multiyear follow-up of AAV5-hFVIII-SQ gene therapy for hemophilia A. N Engl J Med 2020; 382 (01) 29-40
  • 60 Arruda VR, Favaro P, Finn JD. Strategies to modulate immune responses: a new frontier for gene therapy. Mol Ther 2009; 17 (09) 1492-1503
  • 61 Samelson-Jones BJ, Finn JD, Favaro P, Wright JF, Arruda VR. Timing of intensive immunosuppression impacts risk of transgene antibodies after AAV gene therapy in nonhuman primates. Mol Ther Methods Clin Dev 2020; 17: 1129-1138
  • 62 Colella P, Ronzitti G, Mingozzi F. Emerging issues in AAV-mediated in vivo gene therapy. Mol Ther Methods Clin Dev 2017; 8: 87-104
  • 63 Street AM, Ljung R, Lavery SA. Management of carriers and babies with haemophilia. Haemophilia 2008; 14 (Suppl. 03) 181-187
  • 64 Sidonio RF, Mili FD, Li T. et al; Hemophilia Treatment Centers Network. Females with FVIII and FIX deficiency have reduced joint range of motion. Am J Hematol 2014; 89 (08) 831-836
  • 65 Di Michele DM, Gibb C, Lefkowitz JM, Ni Q, Gerber LM, Ganguly A. Severe and moderate haemophilia A and B in US females. Haemophilia 2014; 20 (02) e136-e143
  • 66 Davidoff AM, Ng CY, Zhou J, Spence Y, Nathwani AC. Sex significantly influences transduction of murine liver by recombinant adeno-associated viral vectors through an androgen-dependent pathway. Blood 2003; 102 (02) 480-488
  • 67 Pañeda A, Vanrell L, Mauleon I. et al. Effect of adeno-associated virus serotype and genomic structure on liver transduction and biodistribution in mice of both genders. Hum Gene Ther 2009; 20 (08) 908-917
  • 68 De BP, Heguy A, Hackett NR. et al. High levels of persistent expression of alpha1-antitrypsin mediated by the nonhuman primate serotype rh.10 adeno-associated virus despite preexisting immunity to common human adeno-associated viruses. Mol Ther 2006; 13 (01) 67-76
  • 69 Wang L, Calcedo R, Nichols TC. et al. Sustained correction of disease in naive and AAV2-pretreated hemophilia B dogs: AAV2/8-mediated, liver-directed gene therapy. Blood 2005; 105 (08) 3079-3086
  • 70 Mattar CNZ, Gil-Farina I, Rosales C. et al. In utero transfer of adeno-associated viral vectors produces long-term factor IX levels in a cynomolgus macaque model. Mol Ther 2017; 25 (08) 1843-1853
  • 71 Siboni SM, Biguzzi E, Mistretta C, Garagiola I, Peyvandi F. Long-term prophylaxis in severe factor VII deficiency. Haemophilia 2015; 21 (06) 812-819
  • 72 Napolitano M, Giansily-Blaizot M, Dolce A. et al. Prophylaxis in congenital factor VII deficiency: indications, efficacy and safety. Results from the Seven Treatment Evaluation Registry (STER). Haematologica 2013; 98 (04) 538-544
  • 73 Farah R, Al Danaf J, Braiteh N. et al. Life-threatening bleeding in factor VII deficiency: the role of prenatal diagnosis and primary prophylaxis. Br J Haematol 2015; 168 (03) 452-455
  • 74 Batorova A, Mariani G, Kavakli K. et al; STER Study Group. Inhibitors to factor VII in congenital factor VII deficiency. Haemophilia 2014; 20 (02) e188-e191
  • 75 Smith SA, Travers RJ, Morrissey JH. How it all starts: initiation of the clotting cascade. Crit Rev Biochem Mol Biol 2015; 50 (04) 326-336
  • 76 Petersen LC, Nørby PL, Branner S. et al. Characterization of recombinant murine factor VIIa and recombinant murine tissue factor: a human-murine species compatibility study. Thromb Res 2005; 116 (01) 75-85
  • 77 Binny C, McIntosh J, Della Peruta M. et al. AAV-mediated gene transfer in the perinatal period results in expression of FVII at levels that protect against fatal spontaneous hemorrhage. Blood 2012; 119 (04) 957-966
  • 78 Marcos-Contreras OA, Smith SM, Bellinger DA. et al. Sustained correction of FVII deficiency in dogs using AAV-mediated expression of zymogen FVII. Blood 2016; 127 (05) 565-571
  • 79 Nichols TC, Hough C, Agersø H, Ezban M, Lillicrap D. Canine models of inherited bleeding disorders in the development of coagulation assays, novel protein replacement and gene therapies. J Thromb Haemost 2016; 14 (05) 894-905
  • 80 Carpenter SL, Abshire TC, Anderst JD. Section on Hematology/Oncology and Committee on Child Abuse and Neglect of the American Academy of Pediatrics. Evaluating for suspected child abuse: conditions that predispose to bleeding. Pediatrics 2013; 131 (04) e1357-e1373
  • 81 Margaritis P, Roy E, Aljamali MN. et al. Successful treatment of canine hemophilia by continuous expression of canine FVIIa. Blood 2009; 113 (16) 3682-3689
  • 82 Mahlangu J, Paz P, Hardtke M, Aswad F, Schroeder J. TRUST trial: BAY 86-6150 use in haemophilia with inhibitors and assessment for immunogenicity. Haemophilia 2016; 22 (06) 873-879
  • 83 Lentz SR, Ehrenforth S, Karim FA. et al; adept™2 investigators. Recombinant factor VIIa analog in the management of hemophilia with inhibitors: results from a multicenter, randomized, controlled trial of vatreptacog alfa. J Thromb Haemost 2014; 12 (08) 1244-1253
  • 84 Lamberth K, Reedtz-Runge SL, Simon J. et al. Post hoc assessment of the immunogenicity of bioengineered factor VIIa demonstrates the use of preclinical tools. Sci Transl Med 2017; 9 (372) eaag1286
  • 85 Herzog RW, Fields PA, Arruda VR. et al. Influence of vector dose on factor IX-specific T and B cell responses in muscle-directed gene therapy. Hum Gene Ther 2002; 13 (11) 1281-1291
  • 86 Herzog RW, Mount JD, Arruda VR, High KA, Lothrop Jr CD. Muscle-directed gene transfer and transient immune suppression result in sustained partial correction of canine hemophilia B caused by a null mutation. Mol Ther 2001; 4 (03) 192-200
  • 87 Mannucci PM. Desmopressin (DDAVP) in the treatment of bleeding disorders: the first 20 years. Blood 1997; 90 (07) 2515-2521
  • 88 Franchini M, Mannucci PM. Alloantibodies in von Willebrand disease. Semin Thromb Hemost 2018; 44 (06) 590-594
  • 89 Peyvandi F, Castaman G, Gresele P. et al. A phase III study comparing secondary long-term prophylaxis versus on-demand treatment with vWF/FVIII concentrates in severe inherited von Willebrand disease. Blood Transfus 2019; 17 (05) 391-398
  • 90 Saccullo G, Makris M. Prophylaxis in von Willebrand disease: coming of age?. Semin Thromb Hemost 2016; 42 (05) 498-506
  • 91 Lenting PJ, Christophe OD, Denis CV. von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood 2015; 125 (13) 2019-2028
  • 92 Lillicrap D, Poon M-C, Walker I, Xie F, Schwartz BA. Association of Hemophilia Clinic Directors of Canada. Efficacy and safety of the factor VIII/von Willebrand factor concentrate, haemate-P/humate-P: ristocetin cofactor unit dosing in patients with von Willebrand disease. Thromb Haemost 2002; 87 (02) 224-230
  • 93 Springer TA. von Willebrand factor, Jedi knight of the bloodstream. Blood 2014; 124 (09) 1412-1425
  • 94 Lenting PJ, de Groot PG, De Meyer SF. et al. Correction of the bleeding time in von Willebrand factor (VWF)-deficient mice using murine VWF. Blood 2007; 109 (05) 2267-2268
  • 95 De Meyer SF, Vandeputte N, Pareyn I. et al. Restoration of plasma von Willebrand factor deficiency is sufficient to correct thrombus formation after gene therapy for severe von Willebrand disease. Arterioscler Thromb Vasc Biol 2008; 28 (09) 1621-1626
  • 96 Portier I, Vanhoorelbeke K, Verhenne S. et al. High and long-term von Willebrand factor expression after Sleeping Beauty transposon-mediated gene therapy in a mouse model of severe von Willebrand disease. J Thromb Haemost 2018; 16 (03) 592-604
  • 97 Marx I, Lenting PJ, Adler T, Pendu R, Christophe OD, Denis CV. Correction of bleeding symptoms in von Willebrand factor-deficient mice by liver-expressed von Willebrand factor mutants. Arterioscler Thromb Vasc Biol 2008; 28 (03) 419-424
  • 98 Wang L, Rosenberg JB, De BP. et al. In vivo gene transfer strategies to achieve partial correction of von Willebrand disease. Hum Gene Ther 2012; 23 (06) 576-588
  • 99 De Meyer SF, Vanhoorelbeke K, Chuah MK. et al. Phenotypic correction of von Willebrand disease type 3 blood-derived endothelial cells with lentiviral vectors expressing von Willebrand factor. Blood 2006; 107 (12) 4728-4736
  • 100 Ozelo MC, Vidal B, Brown C. et al. Omental implantation of BOECs in hemophilia dogs results in circulating FVIII antigen and a complex immune response. Blood 2014; 123 (26) 4045-4053
  • 101 Patel A, Zhao J, Duan D, Lai Y. Design of AAV vectors for delivery of large or multiple transgenes. In: Castle MJ. ed. Adeno-Associated Virus Vectors. Springer; New York, NY: 2019: 19-33
  • 102 Wilcox DA, White II GC. Gene therapy for platelet disorders: studies with Glanzmann's thrombasthenia. J Thromb Haemost 2003; 1 (11) 2300-2311
  • 103 Fang J, Hodivala-Dilke K, Johnson BD. et al. Therapeutic expression of the platelet-specific integrin, alphaIIbbeta3, in a murine model for Glanzmann thrombasthenia. Blood 2005; 106 (08) 2671-2679
  • 104 Fang J, Jensen ES, Boudreaux MK. et al. Platelet gene therapy improves hemostatic function for integrin alphaIIbbeta3-deficient dogs. Proc Natl Acad Sci U S A 2011; 108 (23) 9583-9588
  • 105 Gao C, Schroeder JA, Xue F. et al. Nongenotoxic antibody-drug conjugate conditioning enables safe and effective platelet gene therapy of hemophilia A mice. Blood Adv 2019; 3 (18) 2700-2711
  • 106 Wang X, Shin SC, Chiang AF. et al. Intraosseous delivery of lentiviral vectors targeting factor VIII expression in platelets corrects murine hemophilia A. Mol Ther 2015; 23 (04) 617-626
  • 107 Patel SR, Lundgren TS, Spencer HT, Doering CB. The immune response to the fVIII gene therapy in preclinical models. Front Immunol 2020; 11: 494
  • 108 Poothong J, Pottekat A, Siirin M. et al. Factor VIII exhibits chaperone-dependent and glucose-regulated reversible amyloid formation in the endoplasmic reticulum. Blood 2020; 135 (21) 1899-1911
  • 109 Majowicz A, Nijmeijer B, Lampen MH. et al. Therapeutic hFIX activity achieved after single AAV5-hFIX treatment in hemophilia B patients and NHPs with pre-existing anti-AAV5 NABs. Mol Ther Methods Clin Dev 2019; 14: 27-36
  • 110 Spronck EA, Liu YP, Lubelski J. et al. Enhanced factor IX activity following administration of AAV5-R338L “Padua” factor IX versus AAV5 WT human factor IX in NHPs. Mol Ther Methods Clin Dev 2019; 15: 221-231
  • 111 Miesbach W, Klamroth R. The patient experience of gene therapy for hemophilia: qualitative interviews with trial patients. Patient Prefer Adherence 2020; 14: 767-770
  • 112 Nathwani AC, Reiss RU, Tuddenham E. et al. Adeno-associated mediated gene transfer for hemophilia B: 8 year follow up and impact of removing “empty viral particles” on safety and efficacy of gene transfer. Blood 2018; 132 (Suppl. 01) 491
  • 113 Konkle BA, Walsh C, Escobar MA. et al. BAX 335 hemophilia B gene therapy clinical trial results - potential impact of CpG sequences on gene expression. Blood 2020; 137 (06) 763-774