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Introduction

Beginning in 2000, a high, unexpected level of molecular
mimicry between microbial and human proteins has
been repeatedly documented; accordingly, the consequent
potential cross-reactivity following infections or active immu-
nizations has been highlighted.1–11 Pathologically, cross-reac-
tions between pathogen and human proteins might lead to
thrombocytopenia, altered spermatogenesis, schizophrenia
and neuropsychiatric diseases, neurodegeneration, lympho-
mas, sudden death, microcephaly and Guillain-Barré syn-
drome, pneumonia, multiple sclerosis, immunodeficiency,
developmental disorders, autoinflammatory disease, arthritis,
hemochromatosis, myasthenia gravis, and systemic lupus
erythematosus.4,8,12–26

As a matter of fact, pathogen-derived immunoreactive
epitopes are mostly composed of peptide sequences present
in human proteins,10,18,21,23,26 thus documenting that the

immune system does not exert any negative selection of self-
reactive lymphocytes.27,28 Hence, it comes as a logical con-
sequence that peptide sharing between infectious antigens
and human proteins can cause cross-reactions in the human
host, possibly leading to a multitude of postinfection auto-
immune pathologies.

However, as recently underlined,29,30 in general cross-
reactivity and the related potential autoimmune sequelae
have not been reported in nonhuman primates following
experimental infections or during preclinical trials for vac-
cine validation.31 Indeed, preclinical trial reports routinely
state that active antipathogen immunization is exempt from
adverse events in the animal model par excellence, namely,
rhesus macaque (Macaca mulatta), which is a nonhuman
primate phylogenetically close to humans.32–36

Therefore, it was hypothesized that if the peptide sharing
between pathogens and humans is the primum movens of
autoimmune pathologies via cross-reactivity, then different
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Abstract Recently, it was found that proteomes from poliovirus, measles virus, dengue virus, and
severe acute respiratory syndrome-related Coronavirus 2 (SARS-CoV-2) have highmolecular
mimicry at the heptapeptide level with the human proteome, while heptapeptide common-
ality is minimal or absent with proteomes from nonhuman primates, that is, gorilla,
chimpanzee, and rhesus macaque. To acquire more data on the issue, analyses here have
beenexpanded toEbola virus, Francisella tularensis, human immunodeficiencyvirus-1 (HIV-1),
Toxoplasmagondii, Variola virus, andYersinia pestis. Results confirmthatheptapeptideoverlap
is high between pathogens and Homo sapiens, but not between pathogens and primates.
Data are discussed in light of the possible genetic bases that differently model primate
phenomes, thus possibly underlying the zero/low level of molecular mimicry between
infectious agents and primates. Notably, this study might help address preclinical vaccine
tests that currently utilize primates as animalmodels, since autoimmune cross-reactions and
the consequent adverse events cannot occur in absentia of shared sequences.
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levels of peptide sharing with pathogens should characterize
the proteomes of humans and primates. De facto, compara-
tive amino acid (aa) sequence analyses documented that
poliovirus, measles virus, dengue virus, and SARS-CoV-2
share peptide sequences almost exclusively with the human
andmurine proteomes, but notwith primateproteomes.29,30

These data might explain the absence of collateral adverse
events in primates during preclinical vaccine tests, since
autoimmune cross-reactivity cannot occur in primates in
absentia of molecular mimicry.

In this research frame, the present study expands com-
parative sequence analyses to additional pathogens that,
although thoroughly investigated, still remain without safe
and efficacious therapies, for example, Yersinia pestis37 and
HIV-1.38 The results further suggest that primates are animal
models unsuitable to show adverse autoimmune pathologic
cross-reactions in pre-clinical trials following pathogen ad-
ministration by infection or active immunization, and indi-
cate that only mice represent animal models suitable to test
putative vaccine candidates. The genetic bases that might
underlie the low level of heptapeptide sharing between
infectious agents and nonhuman primates are discussed.

Materials and Methods

Molecular mimicry analyses were conducted by using hepta-
peptides as immunobiological units. The analyzed pathogen
proteins/proteomes are as follows (with NCBI TaxId in paren-
theses and further details at http://www.ncbi.nlm.nih.gov/
Taxonomy/Browser/wwwtax.cgi):membrane protein/O-anti-
genprotein from Francisella tularensis, 409 aa (177416); apical
membrane antigen 1-like protein from Toxoplasmagondii, 651
aa (432359); surface antigen S from variola virus, 354 aa
(587200); virulence-associated V antigen from Yersinia pestis,
326 aa (632); proteome from Ebola virus, 5494 aa (128952);
proteome from HIV-1, 3134 aa (11676).

The primary aa sequences of the pathogen proteins/
proteomes were dissected into heptapeptides offset by one
residue, that is, MIRAYEQ, IRAYEQN, RAYEQNP, and so on.
Then, each pathogen heptapeptide was analyzed for occur-
rences within mammalian reference proteomes, that is,
proteomes that have been selected because they cover
well-studied model organisms and other organisms of inter-
est for biomedical research and phylogeny (www.uniprot.
org/proteomes).39–41 Specifically, analyses were conducted
on proteomes from the following organisms (with NCBI
TaxId in parentheses): Homo sapiens (9606); gorilla, Gorilla
gorilla gorilla (9595); chimpanzee, Pan troglodytes (9598);
and rhesus macaque, Macaca mulatta (9544). In addition,
proteomes from the following mammalian organisms were
analyzed as controls: cow, Bos taurus (9913); dog, Canis lupus
familiaris (9615); cat, Felis catus (9685); rabbit, Oryctolagus
cuniculus (9986); mouse, Mus musculus (10090); rat, Rattus
norvegicus (10116); pig, Sus scrofa (9823); and bat, Pteropus
alecto (9402).

Heptapeptide matches between pathogen proteins/pro-
teomes and mammalian proteomes were searched using Pir
Peptide Match program (research.bioinformatics.udel.edu/

peptidematch)40 and UniProt/Swiss-Prot database that is
available at www.uniprot.org39 and consist of reviewed
and annotated protein entries. Protein isoforms were not
considered.

Results

We analyzed four protein antigens derived from F. tularensis,
T, gondii, variola virus, and Y. pestis, respectively, and two
pathogen proteomes, namely, Ebola virus proteome, and
HIV-1 proteome for heptapeptide sharing with the mamma-
lian proteomes described under Methods. The heptapeptide
sharing is quantitatively reported in►Fig. 1 and qualitatively
illustrated in ►Supplementary Tables S1–S6 (online only).

As a preliminary observation, it is noteworthy, as already
underscored elsewhere,8–10 that the peptide sharing shown
in►Fig. 1 is highly improbable from amathematical point of
view. Indeed, the expected number of times that one hepta-
peptide from a proteinwill occur simultaneously in a second
protein is given by the formulamn/N, wherem is the number
of heptapeptides present in the first protein, n is the number
of heptapeptides present in the second protein, and N is
207¼1,280,000,000, that is, the number of heptapeptides
that can be composed using the 20 aa. For values of m and n
<< N, the probability of sharing only one heptapeptide is
0.00000000078125, that is infinitesimal.

Then, ►Fig. 1 shows that the peptide sharing is not sto-
chastic, that is, the pathogen-derived heptapeptides are not
distributed at random among the analyzed mammalian pro-
teomes. Indeed, all of the analyzed pathogen proteins/pro-
teomes, independently of their being bacterial or viral or
protozoan, and independently of their aa length, share hepta-
peptidesequencesalmostexclusivelywith thehuman,murine,
and rat proteomes. Zero or a low number of pathogen-derived
heptapeptides arepresent in theproteomes fromcat, dog, cow,
pig, rabbit, and the three primates. As a logical consequence,
►Fig. 1 shows that pathologic cross-reactivity following path-
ogen infection/immunizationmight be revealed only by using
mice as animal models in preclinical tests.

On the whole, the data exposed in ►Fig. 1 might explain
the differences between humans and primates in the inci-
dence or severity of medical conditions. In fact, communica-
ble and noncommunicable diseases that are common in
humans are practically absent or very rare in great
apes.42–44 Taking HIV-1 infection as an example, the pro-
gression to AIDS—common in humans and rare in great
apes44—can be explained by the vast peptide sharing be-
tween HIV-1 and human proteins that—when altered, mu-
tated, deficient or improperly functioning—associate with
AIDS disorders, that is, immunosuppression, neurological
disturbances, muscle diseases, malignancies, lipodystro-
phies, diarrhea, bone loss, corneal alterations, kidney dis-
ease, and hypertension, among others, which most possibly
associatewithmolecular mimicry.45 Instead, cross-reactions
and autoimmune pathologies cannot occur in animals that
do not share peptides with HIV-1. In these animals, HIV-1
infection/active immunization will be well tolerated with no
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adverse events as routinely reported in preclinical tests
conducted in Rhesus macaques.46

Thus, ►Fig. 1F offers a scientific explanation of the
numerous HIV vaccine failures. Indeed, as early as 2009,
Thomas47wrote “to say that efficacy trials of HIV vaccines and
microbicides have, to date, been disappointing is something of
an understatement.” Today, in 2020, Thomas’ observation is
still valid and the promised effective vaccine that had to cure
HIV has not yet been found,48 and most possibly will not be
found within the next decades if correct trials and correct
animal models are not adopted.

Discussion

Recently, it was shown that heptapeptides from poliovirus,
measles virus, dengue virus, and SARS-CoV-2 occur in the
human proteome, but not in proteomes from primates and
domestic animals.29,30 The data appeared to be of relevance,
since they might indicate that, starting from the very begin-
ning of the mass polio vaccination program in 196249 until
the current project of mass vaccination against SARS-CoV-
2,35,36 the human population has been vaccinated and revac-
cinated,, and it is intended to be vaccinated on the basis of
protocols that used and use animal models unable to high-
light adverse autoimmune pathologic consequences.

The present study confirms such previous data29,30 and
documents that a mathematically unexpected high molecular
mimicry at the heptapeptide level occurs between high-risk
pathogens, namely, F. tularensis, T. gondii, variola virus, Y.
pestis, Ebola virus, and HIV-1, and the human proteome.
Such high molecular mimicry is practically absent when
proteomes from primates, domestic animals, and cattle are
analyzed. Hence, this studymight explain not only thewave of
autoimmune diseases that are increasingly burdening the
human populationworldwide,50 but also the repeated failures
in defining immunotherapies for infectious diseases which
pose a risk to public health and primary health care.51–60

Also, it has to be considered that the present data under-
estimate the cross-reactivity potential by two orders of
magnitude. Indeed, if one considers that a minimal immune
determinant corresponds to five aa residues,61,62 the extent
of the peptide overlap of microbial versus human proteins
and the consequent potential cross-reactivity risk increase
exponentially. Moreover, conformational epitopes have not
been considered.

In light of these additional caveats and of the consequent
higher cross-reactivity risk, it appears to be mandatory to
investigate the molecular mechanisms that underlie the
different extents of molecular mimicry between pathogens
andmammals. Possible objects of investigation might be, for
example, alterations of gene transcription/translation po-
tentially involved in the different shaping of human and
primate genomes/phenomes.

In this regard, studies by Puente et al63 already highlight-
ed important differences in the human and chimpanzee
genomes, from deletion of whole genes to small insertion/
deletion events or single nucleotide changes that lead to
specific gene inactivation. For example, the genes encoding

Fig. 1 Heptapeptide sharing between mammalian proteomes and:
(A) F. tularensis membrane protein/O-antigen protein, (B) T. gondii
apical membrane antigen 1-like protein, (C) variola virus surface
antigen S, (D) Y. pestis virulence-associated V antigen, (E) Ebola virus
proteome, and (F) human immunodeficiency virus (HIV)-1 proteome.
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Serine protease 33 (PRSS33/EOS) and Glutathione hydrolase
5 proenzyme (GGTLA1) are absent in chimpanzee, and single
nucleotide changes in protease genes such as Inactive cas-
pase-12 (CASP12) lead to functional genes in chimpanzee
and pseudogenes in human.63 Actually, although the nucle-
otide difference between humans and chimpanzees is sur-
prisingly small with a value suggested to be 1 to 2%, it was
reported that 80 percent of proteins are different between
humans and chimpanzees.64

In addition, segmental duplications in the genome and
transposable elements are important sources of genetic/
phenetic differences between humans and primates. Seg-
mental duplications are blocks of highly homologous dupli-
cated sequences that define hotspots of chromosomal
rearrangement and act as mediators of normal variation
as well as genomic diseases.65 Studies of gene family
evolution indicate that gene loss and gain are enriched
within the primate lineage66,67 and that recurrent and
independent gene-containing duplications occur within
the gorilla and chimpanzee, and are absent in the human
lineage.68 In particular, Blekhman et al69 showed that not
only species-specific segmental duplications are enriched
with genes that are differentially expressed between spe-
cies but, in addition, genes that are within species-specific
segmental duplications show significantly higher absolute
fold difference in expression level between human and
chimpanzee compared with genes that are not associated
with duplications. In this regard, it is worth mentioning that
a large fraction of the KRAB-containing zinc finger (KRAB-
ZF) genes—that code the largest family of transcription
factors (TFs) in humans—arose from segmental duplica-
tions.70 In primates, KRAB-ZF genes duplicate at a high
rate. Due to their function as transcriptional repressors, the
generation and rapid divergence of these genes may help to
explain some of the transcriptome differences that have
been documented between humans and our closest rela-
tives among the apes.71–73

In sum, it is not surprising that primates are not good
models for many major human diseases/conditions42–44 and
for preclinical vaccine tests.29,30 Literature data and the
present data might explain the inefficacy and the problem-
atics of vaccines,51–60 thus inviting researchers and vacci-
nologists to study, identify, and use the correct animal
models capable of revealing potential autoimmune pathoge-
nicity connected to the peptide sharing.

Finally, as a conclusive note, it appears pertinent to
recall the basic concept first stated in 20001 and then
repeatedly illustrated (1–11,27,28,74–78 and additional refer-
ences therein), according to which only pathogen-derived
peptides, which are absent in the human proteome, that is,
“non-self” peptides, can lead to safe and efficacious
immunotherapies.
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