Semin Liver Dis 2021; 41(02): 213-224
DOI: 10.1055/s-0041-1725023
Review Article

The Inside-Out of End-Stage Liver Disease: Hepatocytes are the Keystone

Nils Haep*
1   Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
,
Rodrigo M. Florentino*
1   Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
,
James E. Squires
2   Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
3   Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
,
Aaron Bell
1   Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
3   Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
,
Alejandro Soto-Gutierrez
1   Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
3   Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
› Author Affiliations
Financial Disclosure This work was supported by grants from NIH, DK099257, DK117881, DK119973, DK096990, and TR002383 to A.S.-G.
U.S. Department of Health and Human Services
National Institute of Diabetes and Digestive and Kidney Diseases

Abstract

Chronic liver injury results in cirrhosis and end-stage liver disease (ESLD) which represents a leading cause of death worldwide, affecting people in their most productive years of life. Medical therapy can extend life, but the only definitive treatment is liver transplantation (LT). However, LT remains limited by access to quality donor organs and suboptimal long-term outcomes. The degeneration from healthy-functioning livers to cirrhosis and ESLD involves a dynamic process of hepatocyte damage, diminished hepatic function, and adaptation. However, the mechanisms responsible for deterioration of hepatocyte function and ultimately hepatic failure in man are poorly understood. We review the current understanding of cirrhosis and ESLD as a dynamic process and outline the current mechanisms associated with the development of hepatic failure from the clinical manifestations to energy adaptations, regeneration, and regulation of nuclear transcription factors. A new generation of therapeutics could target stabilization of hepatocyte differentiation and function to avoid the need for transplantation in patients with cirrhosis and ESLD.

Competing Interests Statement

A.S.-G. is a co-founder and have a financial interest in Von Baer Wolff, Inc., a company focused on biofabrication of autologous human hepatocytes from stem cells technology and programming liver failure and their interests are managed by the Conflict of Interest Office at the University of Pittsburgh in accordance with their policies.


* These authors contributed equally to this article.




Publication History

Article published online:
15 May 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Habka D, Mann D, Landes R, Soto-Gutierrez A. Future economics of liver transplantation: a 20-year cost modeling forecast and the prospect of bioengineering autologous liver grafts. PLoS One 2015; 10 (07) e0131764
  • 2 GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392 (10159): 1736-1788
  • 3 Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol 2019; 70 (01) 151-171
  • 4 Lim Y-S, Kim WR. The global impact of hepatic fibrosis and end-stage liver disease. Clin Liver Dis 2008; 12 (04) 733-746 , vii
  • 5 Melato M, Sasso F, Zanconati F. Liver cirrhosis and liver cancer. A study of their relationship in 2563 autopsies. Zentralbl Pathol 1993; 139 (01) 25-30
  • 6 Squires JE, Balistreri WF. Treatment of hepatitis C: a new paradigm toward viral eradication. J Pediatr 2020; 221: 12-22.e1 , e11
  • 7 Kwong A, Kim WR, Lake JR. et al. OPTN/SRTR 2018 annual data report: liver. Am J Transplant 2020; 20 (Suppl s1): 193-299
  • 8 Goldberg D, Ditah IC, Saeian K. et al. Changes in the prevalence of hepatitis C virus infection, nonalcoholic steatohepatitis, and alcoholic liver disease among patients with cirrhosis or liver failure on the waitlist for liver transplantation. Gastroenterology 2017; 152 (05) 1090-1099.e1 , e1091
  • 9 Cholankeril G, Wong RJ, Hu M. et al. Liver transplantation for nonalcoholic steatohepatitis in the US: temporal trends and outcomes. Dig Dis Sci 2017; 62 (10) 2915-2922
  • 10 Jadlowiec CC, Taner T. Liver transplantation: current status and challenges. World J Gastroenterol 2016; 22 (18) 4438-4445
  • 11 Thomson AW, Vionnet J, Sanchez-Fueyo A. Understanding, predicting and achieving liver transplant tolerance: from bench to bedside. Nat Rev Gastroenterol Hepatol 2020; 17: 719-739 DOI: 10.1038/s41575-020-0334-4.
  • 12 Bodzin AS, Baker TB. Liver transplantation today: where we are now and where we are going. Liver Transpl 2018; 24 (10) 1470-1475
  • 13 Dasari BVM, Schlegel A, Mergental H, Perera MTPR. The use of old donors in liver transplantation. Best Pract Res Clin Gastroenterol 2017; 31 (02) 211-217
  • 14 Zarrinpar A, Busuttil RW. Liver transplantation: past, present and future. Nat Rev Gastroenterol Hepatol 2013; 10 (07) 434-440
  • 15 D'Amico G, Garcia-Tsao G, Pagliaro L. Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies. J Hepatol 2006; 44 (01) 217-231
  • 16 Tsochatzis EA, Bosch J, Burroughs AK. Liver cirrhosis. Lancet 2014; 383 (9930): 1749-1761
  • 17 Marcellin P, Gane E, Buti M. et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet 2013; 381 (9865): 468-475
  • 18 Liu L, Yannam GR, Nishikawa T. et al. The microenvironment in hepatocyte regeneration and function in rats with advanced cirrhosis. Hepatology 2012; 55 (05) 1529-1539
  • 19 Guzman-Lepe J, Cervantes-Alvarez E, Collin de l'Hortet A. et al. Liver-enriched transcription factor expression relates to chronic hepatic failure in humans. Hepatol Commun 2018; 2 (05) 582-594
  • 20 Florentino RM, Fraunhoffer NA, Morita K. et al. Cellular location of HNF4α is linked with terminal liver failure in humans. Hepatol Commun 2020; 4 (06) 859-875
  • 21 Argemi J, Latasa MU, Atkinson SR. et al. Defective HNF4alpha-dependent gene expression as a driver of hepatocellular failure in alcoholic hepatitis. Nat Commun 2019; 10 (01) 3126
  • 22 Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 2014; 14 (03) 181-194
  • 23 Lee YA, Wallace MC, Friedman SL. Pathobiology of liver fibrosis: a translational success story. Gut 2015; 64 (05) 830-841
  • 24 Fernández M, Semela D, Bruix J, Colle I, Pinzani M, Bosch J. Angiogenesis in liver disease. J Hepatol 2009; 50 (03) 604-620
  • 25 García-Pagán JC, Gracia-Sancho J, Bosch J. Functional aspects on the pathophysiology of portal hypertension in cirrhosis. J Hepatol 2012; 57 (02) 458-461
  • 26 Pose E, Cardenas A. Translating our current understanding of ascites management into new therapies for patients with cirrhosis and fluid retention. Dig Dis 2017; 35 (04) 402-410
  • 27 Runyon BA, Committee APG. AASLD Practice Guidelines Committee. Management of adult patients with ascites due to cirrhosis: an update. Hepatology 2009; 49 (06) 2087-2107
  • 28 Salerno F, Cammà C, Enea M, Rössle M, Wong F. Transjugular intrahepatic portosystemic shunt for refractory ascites: a meta-analysis of individual patient data. Gastroenterology 2007; 133 (03) 825-834
  • 29 Fede G, D'Amico G, Arvaniti V. et al. Renal failure and cirrhosis: a systematic review of mortality and prognosis. J Hepatol 2012; 56 (04) 810-818
  • 30 Raevens S, Fallon MB. Potential clinical targets in hepatopulmonary syndrome: lessons from experimental models. Hepatology 2018; 68 (05) 2016-2028
  • 31 DuBrock HM, Krowka MJ. The myths and realities of portopulmonary hypertension. Hepatology 2020; 72 (04) 1455-1460
  • 32 Møller S, Lee SS. Cirrhotic cardiomyopathy. J Hepatol 2018; 69 (04) 958-960
  • 33 Burroughs AK, Thalheimer U. Hepatic venous pressure gradient in 2010: optimal measurement is key. Hepatology 2010; 51 (06) 1894-1896
  • 34 Ripoll C, Groszmann R, Garcia-Tsao G. et al; Portal Hypertension Collaborative Group. Hepatic venous pressure gradient predicts clinical decompensation in patients with compensated cirrhosis. Gastroenterology 2007; 133 (02) 481-488
  • 35 Jepsen P, Ott P, Andersen PK, Sørensen HT, Vilstrup H. Clinical course of alcoholic liver cirrhosis: a Danish population-based cohort study. Hepatology 2010; 51 (05) 1675-1682
  • 36 Heymann F, Tacke F. Immunology in the liver--from homeostasis to disease. Nat Rev Gastroenterol Hepatol 2016; 13 (02) 88-110
  • 37 Albillos A, Lario M, Álvarez-Mon M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance. J Hepatol 2014; 61 (06) 1385-1396
  • 38 Arvaniti V, D'Amico G, Fede G. et al. Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis. Gastroenterology 2010; 139 (04) 1246-1256 , 1256.e1–1256.e5
  • 39 Borzio M, Salerno F, Piantoni L. et al. Bacterial infection in patients with advanced cirrhosis: a multicentre prospective study. Dig Liver Dis 2001; 33 (01) 41-48
  • 40 Fernández J, Navasa M, Gómez J. et al. Bacterial infections in cirrhosis: epidemiological changes with invasive procedures and norfloxacin prophylaxis. Hepatology 2002; 35 (01) 140-148
  • 41 Anthony PP, Ishak KG, Nayak NC, Poulsen HE, Scheuer PJ, Sobin LH. The morphology of cirrhosis. Recommendations on definition, nomenclature, and classification by a working group sponsored by the World Health Organization. J Clin Pathol 1978; 31 (05) 395-414
  • 42 Schaffner F, Poper H. Capillarization of hepatic sinusoids in man. Gastroenterology 1963; 44: 239-242
  • 43 Pérez-Tamayo R. Cirrhosis of the liver: a reversible disease?. Pathol Annu 1979; 14 (Pt 2): 183-213
  • 44 Ishak K, Baptista A, Bianchi L. et al. Histological grading and staging of chronic hepatitis. J Hepatol 1995; 22 (06) 696-699
  • 45 Bedossa P, Poynard T. The METAVIR Cooperative Study Group. An algorithm for the grading of activity in chronic hepatitis C. Hepatology 1996; 24 (02) 289-293
  • 46 Haj M, Rockey DC. Predictors of clinical outcomes in cirrhosis patients. Curr Opin Gastroenterol 2018; 34 (04) 266-271
  • 47 Pugh RNH, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg 1973; 60 (08) 646-649
  • 48 Child CG, Turcotte JG. Surgery and portal hypertension. Major Probl Clin Surg 1964; 1: 1-85
  • 49 Mansour A, Watson W, Shayani V, Pickleman J. Abdominal operations in patients with cirrhosis: still a major surgical challenge. Surgery 1997; 122 (04) 730-735 , discussion 735–736
  • 50 Garrison RN, Cryer HM, Howard DA, Polk Jr HC. Clarification of risk factors for abdominal operations in patients with hepatic cirrhosis. Ann Surg 1984; 199 (06) 648-655
  • 51 Kamath PS, Wiesner RH, Malinchoc M. et al. A model to predict survival in patients with end-stage liver disease. Hepatology 2001; 33 (02) 464-470
  • 52 Wiesner R, Edwards E, Freeman R. et al; United Network for Organ Sharing Liver Disease Severity Score Committee. Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology 2003; 124 (01) 91-96
  • 53 Malinchoc M, Kamath PS, Gordon FD, Peine CJ, Rank J, ter Borg PC. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology 2000; 31 (04) 864-871
  • 54 Sacleux SC, Samuel D. A critical review of MELD as a reliable tool for transplant prioritization. Semin Liver Dis 2019; 39 (04) 403-413
  • 55 Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell 2013; 152 (06) 1237-1251
  • 56 Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 2017; 14 (07) 397-411
  • 57 Schuppan D, Kim YO. Evolving therapies for liver fibrosis. J Clin Invest 2013; 123 (05) 1887-1901
  • 58 Yoon YJ, Friedman SL, Lee YA. Antifibrotic therapies: where are we now?. Semin Liver Dis 2016; 36 (01) 87-98
  • 59 Caneba CA, Bellance N, Yang L, Pabst L, Nagrath D. Pyruvate uptake is increased in highly invasive ovarian cancer cells under anoikis conditions for anaplerosis, mitochondrial function, and migration. Am J Physiol Endocrinol Metab 2012; 303 (08) E1036-E1052
  • 60 Chen L-Y, Yang B, Zhou L, Ren F, Duan ZP, Ma YJ. Promotion of mitochondrial energy metabolism during hepatocyte apoptosis in a rat model of acute liver failure. Mol Med Rep 2015; 12 (04) 5035-5041
  • 61 Komurov K, Tseng JT, Muller M. et al. The glucose-deprivation network counteracts lapatinib-induced toxicity in resistant ErbB2-positive breast cancer cells. Mol Syst Biol 2012; 8: 596
  • 62 Nagrath D, Caneba C, Karedath T. et al. Metabolomics for mitochondrial and cancer studies. Biochimica et Biophysica Acta (BBA). Bioenergetics 2011; 1807: 650-663
  • 63 Díaz Gil J, Rossi I, Escartín P, Segovia JM, Gosálvez M. Mitochondrial functions and content of microsomal and mitochondrial cytochromes in human cirrhosis. Clin Sci Mol Med 1977; 52 (06) 599-606
  • 64 Möller B, Dargel R. Structural and functional impairment of mitochondria from rat livers chronically injured by thioacetamide. Acta Pharmacol Toxicol (Copenh) 1984; 55 (02) 126-132
  • 65 Krähenbühl S, Stucki J, Reichen J. Mitochondrial function in carbon tetrachloride-induced cirrhosis in the rat. Qualitative and quantitative defects. Biochem Pharmacol 1989; 38 (10) 1583-1588
  • 66 Nishikawa T, Bellance N, Damm A. et al. A switch in the source of ATP production and a loss in capacity to perform glycolysis are hallmarks of hepatocyte failure in advance liver disease. J Hepatol 2014; 60 (06) 1203-1211
  • 67 Treyer A, Müsch A. Hepatocyte polarity. In: Terjung R. ed. Comprehensive Physiology. Hoboken, NJ: John Wiley & Sons, Inc.; 2013: c120009
  • 68 Boyer JL. Bile formation and secretion. In: Terjung R. ed. Comprehensive Physiology. Hoboken, NJ: John Wiley & Sons, Inc.; 2013: c120027
  • 69 Luther J, Gala MK, Borren N. et al. Hepatic connexin 32 associates with nonalcoholic fatty liver disease severity. Hepatol Commun 2018; 2 (07) 786-797
  • 70 Wright JA, Richards T, Becker DL. Connexins and diabetes. Cardiol Res Pract 2012; 2012: 496904
  • 71 Hernández-Guerra M, Hadjihambi A, Jalan R. Gap junctions in liver disease: implications for pathogenesis and therapy. J Hepatol 2019; 70 (04) 759-772
  • 72 Tiburcio TC, Willebrords J, da Silva TC. et al. Connexin32 deficiency is associated with liver injury, inflammation and oxidative stress in experimental non-alcoholic steatohepatitis. Clin Exp Pharmacol Physiol 2017; 44 (02) 197-206
  • 73 Kameritsch P, Khandoga N, Pohl U, Pogoda K. Gap junctional communication promotes apoptosis in a connexin-type-dependent manner. Cell Death Dis 2013; 4: e584-e584
  • 74 Amaya MJ, Nathanson MH. Calcium signaling in the liver. In: Terjung R. ed. Comprehensive Physiology. Hoboken, NJ: John Wiley & Sons, Inc.; 2013: c120013
  • 75 Leite MF, Hirata K, Pusl T. et al. Molecular basis for pacemaker cells in epithelia. J Biol Chem 2002; 277 (18) 16313-16323
  • 76 Michalopoulos GK. Hepatostat: liver regeneration and normal liver tissue maintenance. Hepatology 2017; 65 (04) 1384-1392
  • 77 Paradis V, Youssef N, Dargère D. et al. Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas. Hum Pathol 2001; 32 (03) 327-332
  • 78 Lu C, Xia J, Zhou Y. et al. Loss of Gsα impairs liver regeneration through a defect in the crosstalk between cAMP and growth factor signaling. J Hepatol 2016; 64 (02) 342-351
  • 79 Paranjpe S, Bowen WC, Mars WM. et al. Combined systemic elimination of MET and epidermal growth factor receptor signaling completely abolishes liver regeneration and leads to liver decompensation. Hepatology 2016; 64 (05) 1711-1724
  • 80 Michalopoulos GK, Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol 2020; 18 (01) 40-55
  • 81 Tsagianni A, Mars WM, Bhushan B. et al. Combined systemic disruption of MET and epidermal growth factor receptor signaling causes liver failure in normal mice. Am J Pathol 2018; 188 (10) 2223-2235
  • 82 Schrem H, Klempnauer J, Borlak J. Liver-enriched transcription factors in liver function and development. Part I: the hepatocyte nuclear factor network and liver-specific gene expression. Pharmacol Rev 2002; 54 (01) 129-158
  • 83 Schrem H, Klempnauer J, Borlak J. Liver-enriched transcription factors in liver function and development. Part II: the C/EBPs and D site-binding protein in cell cycle control, carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liver-specific gene regulation. Pharmacol Rev 2004; 56 (02) 291-330
  • 84 Lau HH, Ng NHJ, Loo LSW, Jasmen JB, Teo AKK. The molecular functions of hepatocyte nuclear factors - in and beyond the liver. J Hepatol 2018; 68 (05) 1033-1048
  • 85 Chen WS, Manova K, Weinstein DC. et al. Disruption of the HNF-4 gene, expressed in visceral endoderm, leads to cell death in embryonic ectoderm and impaired gastrulation of mouse embryos. Genes Dev 1994; 8 (20) 2466-2477
  • 86 Kanazawa T, Konno A, Hashimoto Y, Kon Y. Hepatocyte nuclear factor 4 alpha is related to survival of the condensed mesenchyme in the developing mouse kidney. Dev Dyn 2010; 239 (04) 1145-1154
  • 87 Okita K, Matsumura Y, Sato Y. et al. A more efficient method to generate integration-free human iPS cells. Nat Methods 2011; 8 (05) 409-412
  • 88 Ieda M, Fu J-D, Delgado-Olguin P. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010; 142 (03) 375-386
  • 89 Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010; 463 (7284): 1035-1041
  • 90 Niu W, Zang T, Smith DK. et al. SOX2 reprograms resident astrocytes into neural progenitors in the adult brain. Stem Cell Reports 2015; 4 (05) 780-794
  • 91 Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 2008; 455 (7213): 627-632
  • 92 Nishikawa T, Bell A, Brooks JM. et al. Resetting the transcription factor network reverses terminal chronic hepatic failure. J Clin Invest 2015; 125 (04) 1533-1544
  • 93 Huang K-W, Reebye V, Czysz K. et al. Liver activation of hepatocellular nuclear factor-4α by small activating RNA rescues dyslipidemia and improves metabolic profile. Mol Ther Nucleic Acids 2020; 19: 361-370
  • 94 Munroe M, Niero EL, Fok WC. et al. Telomere dysfunction activates p53 and represses HNF4α expression leading to impaired human hepatocyte development and function. Hepatology 2020; 72 (04) 1412-1429
  • 95 Jiang JX, Török NJ. Liver injury and the activation of the hepatic myofibroblasts. Curr Pathobiol Rep 2013; 1 (03) 215-223
  • 96 Yin C, Evason KJ, Asahina K, Stainier DY. Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Invest 2013; 123 (05) 1902-1910
  • 97 Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000; 275 (04) 2247-2250
  • 98 Brown B, Lindberg K, Reing J, Stolz DB, Badylak SF. The basement membrane component of biologic scaffolds derived from extracellular matrix. Tissue Eng 2006; 12 (03) 519-526
  • 99 Dooley S, ten Dijke P. TGF-β in progression of liver disease. Cell Tissue Res 2012; 347 (01) 245-256
  • 100 Wong L, Yamasaki G, Johnson RJ, Friedman SL. Induction of beta-platelet-derived growth factor receptor in rat hepatic lipocytes during cellular activation in vivo and in culture. J Clin Invest 1994; 94 (04) 1563-1569
  • 101 McHedlidze T, Waldner M, Zopf S. et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 2013; 39 (02) 357-371
  • 102 Pradere J-P, Kluwe J, De Minicis S. et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology 2013; 58 (04) 1461-1473
  • 103 Wan J, Benkdane M, Teixeira-Clerc F. et al. M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology 2014; 59 (01) 130-142
  • 104 Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 2008; 48 (01) 322-335
  • 105 Desmots F, Rissel M, Gilot D. et al. Pro-inflammatory cytokines tumor necrosis factor α and interleukin-6 and survival factor epidermal growth factor positively regulate the murine GSTA4 enzyme in hepatocytes. J Biol Chem 2002; 277 (20) 17892-17900
  • 106 Wasmuth HE, Kunz D, Yagmur E. et al. Patients with acute on chronic liver failure display “sepsis-like” immune paralysis. J Hepatol 2005; 42 (02) 195-201
  • 107 Rockey DC, Fouassier L, Chung JJ. et al. Cellular localization of endothelin-1 and increased production in liver injury in the rat: potential for autocrine and paracrine effects on stellate cells. Hepatology 1998; 27 (02) 472-480
  • 108 Bilzer M, Roggel F, Gerbes AL. Role of Kupffer cells in host defense and liver disease. Liver Int 2006; 26 (10) 1175-1186
  • 109 Dixon LJ, Barnes M, Tang H. et al. Kupffer cells in the liver. In: Terjung R. ed. Comprehensive Physiology. Hoboken, NJ: John Wiley & Sons, Inc.; 2013: c120026
  • 110 Mookerjee RP, Stadlbauer V, Lidder S. et al. Neutrophil dysfunction in alcoholic hepatitis superimposed on cirrhosis is reversible and predicts the outcome. Hepatology 2007; 46 (03) 831-840
  • 111 Sarin SK, Choudhury A. Acute-on-chronic liver failure: terminology, mechanisms and management. Nat Rev Gastroenterol Hepatol 2016; 13 (03) 131-149
  • 112 Zhai S, Zhang L, Dang S. et al. The ratio of Th-17 to Treg cells is associated with survival of patients with acute-on-chronic hepatitis B liver failure. Viral Immunol 2011; 24 (04) 303-310
  • 113 Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008; 134 (06) 1655-1669
  • 114 Garcia-Tsao G, Friedman S, Iredale J, Pinzani M. Now there are many (stages) where before there was one: In search of a pathophysiological classification of cirrhosis. Hepatology 2010; 51 (04) 1445-1449