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Infectious diseases have significant impact globally, with
high mortality and morbidity rates reported each year by
the World Health Organization.1 Over the past few decades,
new challenges associated with infectious diseases have
placed additional burdens on health care due to the emer-
gence of antimicrobial resistance,2 and viral pandemics
including Ebola,3 human immunodeficiency virus (HIV),4

and most recently severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), which is causing the ongoing coro-
navirus disease 2019 (COVID-19) pandemic outbreak.5

Platelets are small anucleate cells derived from megakar-
yocytes, and are traditionally known for their role in preven-

tion of bleeding andminimizing vascular injury.6While vital
for hemostasis, there has been an increasing awareness that
platelets also contribute to various human pathologies,
including autoimmunity,7 cancer,8 and infectious diseases.9

Thus, in addition to their key contribution to thrombus
formation, there is increasing consensus that platelets would
play important roles in modulating immune and autoim-
mune responses.10,11

The ability of platelets to participate in the immune
response is in part due to their ability to release a myriad
of inflammatory and bioactive molecules storedwithin their
granules. These mediators are able to attract and modulate
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Abstract Platelets, as nonnucleated blood components, are classically recognized for their
pivotal role in hemostasis. In recent years, however, accumulating evidence points to a
nonhemostatic role for platelets, as active participants in the inflammatory and
immune responses to microbial organisms in infectious diseases. This stems from
the ability of activated platelets to secrete a plethora of immunomodulatory cytokines
and chemokines, as well as directly interplaying with viral receptors. While much
attention has been given to the role of the cytokine storm in the severity of the
coronavirus disease 2019 (COVID-19), less is known about the contribution of platelets
to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we
give a brief overview on the platelet contribution to antiviral immunity and response
during SARS-CoV-2 infection.
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the activities of circulating leukocytes, important in orches-
trating localized immune responses to pathogens.11 Platelets
have also been found to elicit direct effector functions, so as
to be considered independent immune effector cells.12 In-
deed, megakaryocytes and platelets have been shown to
express several immune-associated molecules and recep-
tors, including Fc receptors,13 complement receptors,14 che-
mokine receptors,15,16 and an array of toll-like receptors
(TLRs).17–25 The expression of these functional immune
receptors raises the question whether platelets can also
engage viruses and contribute to antiviral immunity. In
this short narrative review, we explore how viruses engage
circulating platelets and how they contribute to viral
pathology.

The Role of Platelets in Viral Immunity

Viral immunity has traditionally focused on the roles of
leukocytes, given their direct involvement in viral spread
and antiviral responses. Clinically, platelet hyperactivity has
been recognized as a hallmark of many viral infections,
including dengue virus,26 HIV,27–29 influenza virus,30 and
SARS-CoV-2.31 Given the prominent clinical presentations of
platelet-driven events, along with their emerging immune
role, having a better understanding of the role of platelets in
viral infections may disclose and highlight novel therapeutic
targets.

A key antiviral platelet response is to sequester viral
particles, thus limiting viral spread within the host environ-
ment. Evidence of such activity has been seen in HIV, where
platelets bind and endocytose HIV virions,32–35 which is
believed to help clearance of viral particles from circula-
tion.36 In addition to engaging viruses, platelets are also able
to exert direct antiviral properties. During platelet activa-
tion, α-granules are trafficked to the cell surface and exter-
nalized, so releasing awide spectrum of bioactive molecules,
including platelet factor 4 (PF4; also referred to as the
chemokine CXCL4). As well as being an important chemotac-
tic agent for leukocytes, PF4 has direct antiviral activity,
being found to suppress HIV infection of T cells.37–39 Inter-
estingly, plateletsmayalso help control infection through the
secretion of platelet antimicrobial peptides, such as PD1–
PD4, which have been shown to have antiviral activity
against the vaccinia virus.40 A recent study has also pre-
sented data demonstrating that platelets contain virus-spe-
cific immunoglobulin G (IgG), which is able to potentially
neutralize in vitro and in vivo viral infection against human
cytomegalovirus (HCMV) and influenza A virus.41 Platelet-
derived IgG localizes to α-granules,42 suggesting that mega-
karyocytes are able to take up IgG,where theyare stored inα-
granules for later secretion bymature platelets. Interestingly,
IgG released from platelets was found to be more efficient at
neutralizing virus compared with equal amounts of plasma
IgG,41 the biological significance of which is unclear.

Platelets are also able to orchestrate local immune
responses to viral infection. HCMV can be recognized by
platelet TLR-2. This engagement leads to platelet degranula-
tion, leukocyte chemotaxis, and formation of platelet aggre-

gates with neutrophils, monocytes, B cells, T cells, and
dendritic cells.43 Through these platelet–leukocyte interac-
tions, platelets present viral antigens to leukocytes via major
histocompatibility complex class I,44 as well as providing co-
stimulatory signals to antigen-presenting cells,45 both of
which can prime andmount an antiviral leukocyte response.
Similar inflammatory activities have been observed in den-
gue virus infection, whereby dengue-infected platelets were
able to induce monocyte activation.46

While platelets can exert a degree of antiviral immunity,
viruses have evolved mechanisms of evading platelet recog-
nition. Viruses are able to engage with receptors at platelet
surfaces; for example, dengue virus and HIV both bind
surface lectin receptors and dendritic cell-specific intercel-
lular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)
on platelets.47 Such interactions lead to internalization of
viral particles, where viruses such has HIV, HCMV, and
hepatitis C virus (HCV) can continue to replicate and gener-
ate productive viruses within both megakaryocytes and
platelets.48–50 In addition to using platelets as a site of
replication, some viruses use circulating platelets as cellular
carriers to evade immune detection, such as the influenza
virus51 and HIV,52,53 essentially forming latent viral reser-
voirs within the circulation. Interestingly, HCV is believed to
utilize circulating platelets to transport itself to the liver,
where enhanced platelet–hepatocyte interactions prolong
the time for potential viral infection.54

Thrombocytopenia is a common feature among various
viral infections, which is associated with more severe dis-
eases.55 Viruses have developed several mechanisms to
target and reduce platelet production and/or integrity. A
classic example can be seen with neuraminidase activity of
influenza virus, which reduces platelet life span by targeting
them for rapid clearance in the liver and spleen.56 In addition
to targeting platelets for destruction, neuraminidase activity
also alters megakaryocyte ploidy, morphology, and subse-
quent platelet size.57 Human herpes viruses have also
adopted similar mechanisms, and can interfere with throm-
bopoietin activity, thus reducing megakaryocyte colony
formation58 and impairing megakaryocyte survival and dif-
ferentiation.59 Defective megakaryocyte differentiation can
also be achieved by altering cytokine expression in the bone
marrow, which has been found in dengue virus infection.60

By targeting these megakaryocytic developmental check-
points, abnormal platelet activation, mitochondrial dysfunc-
tion, reduced cellular integrity, and increased apoptosis are
often seen in patients infected with dengue,61–63 encepha-
lomyocarditis virus,23 and HIV.64,65

In addition to impacting platelet integrity, viral infection
can also affect platelet function.66 Coxsackievirus B virus
(CVB) binds and enters platelets via the Coxsackie–Adeno
receptor.67 While unable to replicate inside the platelet, CVB
modulates activity and enhances P-selectin release and
phosphatidylserine exposure, which collectively promote
platelet–leukocyte interactions and ultimately leads to plate-
let destruction and thrombocytopenia,67 driving viral pa-
thology. While vaccinia virus is known to bind and enter
platelets,68 the significance of this interaction to disease is
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not completely understood. Early studies reported reduced
in vitro platelet aggregation, but increased serotonin release
in vaccinia-infected platelets,68 which would suggest that
platelet function may be suppressed. In contrast, in vivo
models found vaccinia virus infection led to fatal intravascu-
lar coagulation,69 implicating an augmented platelet re-
sponse. This disparity may highlight that the vaccinia virus
may impact endothelial function, which is known to be
critical in regulating in vivo platelet responses.70,71

Given the complex nature of the immune network, the
existence of indirect effects of viruses on platelets is unsur-
prising. Platelet hyperactivity in influenza infection can be
partially attributed to influenza’s impact on monocyte cyto-
kine release, which then activates platelets.72 Adaptive im-
mune responses to HCV, HIV, HCMV, herpes viruses, and
coronaviruses result in the production of antibodies target-
ing viral glycoproteins to help neutralize and suppress viral
spread. These antiviral glycoprotein antibodies can, however,
cross-react with platelet integrins and trigger platelet auto-
antibody-induced thrombocytopenia in several viral set-
tings.73 Viruses have also been found to infect the
endothelium, with indirect effects on platelet function. For
example, dengue virus and hantaviruses infect endothelial
cells, promoting endothelial activation, endothelial–platelet
interactions, and increasing vascular permeability.74,75 This
disruption of vascular integrity is thought to contribute to
the increased platelet reactivity observed in virally infected
patients and may represent one mechanism of enhanced
platelet clearance.

An additional consideration of chronic viral infection, like
HIV, is that patients require permanent therapeutic inter-
vention to suppress viral replication. Some cohort studies
have found that certain antiretroviral drugs are associated
with increased risk of myocardial infarction,76,77 which have
subsequently been found to enhance platelet activation and
aggregation.78,79 These effects can be further enhanced by
vascular endothelium, which is also impacted by antiretro-
viral drugs inways that increase platelet reactivity.80,81 Such
data demonstrate that both viral infection and therapeutic
measures to control infection can impact platelet reactivity.

The Platelet Response during SARS-COV-2
Infection

Dual activation of inflammation and coagulation pathways,
combined with an excessive recruitment and activation of
immune cells to sites of infection, is known as “immuno-
thrombosis,” a concept that was initially conceptualized by
Engelmann and Massberg, in 2013, to accurately define the
crosstalk between hemostasis and the innate immune sys-
tem.82 Given that aberrant platelet activation has been
documented with other viral infections, researchers have
begun to explore the potential contributory role of platelets
to SARS-CoV-2 infection.

The core pathology of COVID-19 is pulmonary, with
epithelial cell infection by SARS-CoV-2 ultimately resulting
in pulmonary leukocyte infiltration and an excessive inflam-
matory response.83 Clinical evidence supports this model,

with several reports detailing signs of epithelial and endo-
thelial inflammation, leukocyte recruitment, and platelet
activation in the lung of COVID-19 patients.84–86 Poorer
prognoses in patients are shown to associate with abnormal
coagulation parameters, primarily D-dimer, fibrinogen,
fibrin degradation product levels, reduced mitochondrial
depolarization, and phosphatidylserine exposure,87–89 sug-
gesting that thrombosis may be important to COVID-19
pathophysiology. Severe pulmonary inflammation and ob-
structive immunothrombosis in the lung microvascular net-
work of COVID-19 patients, leading to pulmonary
thrombosis/thromboembolism, underlie multiple organ fail-
ure and mortality in patients with advanced stages of
illness.90–92

Elevated plasma levels of proinflammatory cytokines such
as interleukin (IL)-1α, IL-1β, IL-6, IL-12, monocyte chemo-
attractant protein-1, interferon-γ, and tumor necrosis factor-
α have been found in patients with COVID-19.93–95 While
there is evidence of elevated proinflammatory cytokines, it is
important to note that there are also reports finding similar
or lower levels of proinflammatory cytokines when com-
pared with patients with COVID-19-unrelated acute respira-
tory distress syndrome or other cytokine release
syndromes.96–98 In addition, reports have also found elevat-
ed D-dimer concentrations in patients with COVID-19,99

which is consistent with the observed systemic inflamma-
tion and macrovascular thrombotic complications seen in
patients with SARS-CoV-2 infection,100,101 and may there-
fore be linked to coagulation activation and diffuse macro-
and microvascular thrombosis.102,103

While SARS-CoV-2 messenger RNA (mRNA) can be
detected in platelets isolated from patients with COVID-
19,94,104–106 it is not clear whether SARS-CoV-2 is internal-
ized by the platelets via receptor-mediated endocytosis.
Although it is widely accepted that SARS-CoV-2 infects
host cells via binding angiotensin-converting enzyme 2
(ACE2),107 it is not known whether platelets express this
protein. While some studies have shown that neither ACE2
mRNA nor protein could be detected in platelets,94,104 others
have reported robust ACE2 expression in platelets, associated
to direct platelet activation by SARS-CoV-2 via spike/ACE2
interactions.108,109 The reason for this disparity is unclear,
but may stem from differences in washed platelet prepara-
tion given that one study used sodium citrate-evacuated
blood tubes, while others used an acid/citrate/dextrose
anticoagulant. It is also feasible that genetic differences
between cohort populations may account for differences in
ACE2 expression or protein polymorphisms. These discor-
dant results were clearly highlighted in a recent review.106

Interestingly, while Zaid et al demonstrated that platelets
only associatewith SARS-CoV-2 RNA, they reported substan-
tial alterations in the platelet transcriptome and proteome
profiles,104 as well as platelet hyperreactivity.94,104 The
abilities of viruses including SARS-CoV-2 to associate and
internalize with platelets are listed in ►Table 1.

These studies indicate that platelet activation contributes
to COVID-19 pathophysiology. Autopsy studies found evi-
dence of extensive thrombosis in multiple organs,84
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suggesting enhanced platelet reactivity may be a driver of
thrombosis in severe COVID-19. Abnormal platelet morphol-
ogy has also been reported in COVID-19 patients, with
evidence of large, hyperchromatic, and vacuolated plate-
lets.110 A recent study documented COVID-19 patients as
having enhanced platelet hyperreactivity relative to non-
COVID-19 patients and controls subjects.111 Greater levels of
platelet–monocyte and platelet–granulocyte aggregates can
be seen in patients with COVID-19 pneumonia,112 highlight-
ing greater levels of systemic platelet activation. Further
phenotypic analysis revealed that resting platelets in
COVID-19 patients had similar levels of P-selectin expression
as control platelets activatedwith collagen.112 Taus et al also
demonstrate that COVID-19 platelets contribute to the in-
creased fibrinogen, von Willebrand factor, and factor XII
reported in patients, while facilitating accelerated factor
XII-dependent coagulation.112 Moreover, platelets isolated
from patients with severe COVID-19 were able to induce ex
vivo tissue factor expression in monocytes isolated from
health controls,88 indicating platelet crosstalk into other
circulating cells. Interestingly, normal platelet function is
restored in patients who have recovered from SARS-CoV-2
infection, which suggests that platelet hyperreactivity may
be a direct consequence of SARS-CoV-2 infection.111 Togeth-
er, these data suggest that in COVID-19, platelets are primed
to spread proinflammatory and procoagulant activitieswith-
in the systemic circulation.

►Fig. 1 summarizes the role that the platelet could have
following SARS-CoV-2 infection.

Conclusion

COVID-19 is a viral infectionwith variable clinical outcomes,
determined by the amplitude of immunothrombosis re-
sponse and extent of tissue injury.While hyperinflammation
and the “cytokine storm” may be central to the most severe
COVID-19 cases,113 given the clinical spectrum of COVID-19,
the absolute centrality of the “cytokine storm”may not be as
straightforward. It could be argued that the extent and

importance of increased cytokine release on pathology
draws uponmultiple factors including genetic, host and viral
phenotypic, and environmental.114 Recently, studies using
the bronchoalveolar lavage of COVID-19 patients in intensive
care, highlighted the presence of a ‘lipid storm’ but were
unable to definitively demonstrate whether platelets or
other cells are the cause of this altered lipid profile.115

Currently, available studies suggest that the COVID-19 coa-
gulopathy comprises a combination of localized pulmonary
platelet consumption, low-grade disseminated intravascular
coagulation, and thrombotic microangiopathy.

Of particular interests are the various circulating inflam-
matory coagulation biomarkers involved directly in clotting,
with specific focus onfibrin/fibrinogen, D-dimers, P-selectin,
von Willebrand factor multimers, soluble thrombomodulin,
and tissue factor, which may amplify inflammation and
hypercoagulability in patients with COVID-19. Central to
the activity of these biomarkers are their receptors and
signaling pathways on endothelial cells, platelets, mono-
cytes, and erythrocytes. Altogether, these collective obser-
vations raise the question as to whether the virus acts
directly on the hemostatic system or whether hemostatic
activation is secondary to the upstream inflammatory
process.

Currently, literature remains ambivalent regarding ACE2
expression on platelets. It would therefore be useful to
explore whether SARS-CoV-2 directly binds platelets via
ACE2 or through alternative pathways. These studies may
give better insight into underlying pathways driving the
“cytokine storm coagulation” that contributes to the multi-
ple organ dysfunction associated with severe COVID-19.
While therapeutic intervention targeting the cytokine storm
in severe COVID-19 is gaining increasing attention,116 the
use of antiplatelet therapy also warrants further study.
Aspirin administration has been associated with a reduced
risk of mechanical ventilation, intensive care unit admission,
and in-hospital mortality in 412 hospitalized COVID-19
patients.117 A limitation to this study, however, is that it is
a retrospective, observational cohort study, which limits its

Table 1 Associations and/or internalizations between platelets and different viruses

Virus Platelet References

Type Nomenclature Association Internalization

DNA Herpes simplex virus type 1 (HSV-1) Yes ? 108

Human cytomegalovirus (HCMV) Yes ? 118

Vaccinia virus (VACV or VV) Yes ? 43

RNA Human immunodeficiency virus (HIV) Yes Yes 68

Hepatitis C virus (HCV) Yes Yes 32

Dengue virus (DENV) Yes Yes 119

Influenza virus (flu virus) Yes Yes 120

Coxsackievirus B (CVB) Yes Yes 121

Encephalomyocarditis virus (EMCV) Yes Yes 67

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Yes ? 94
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strength as clinical evidence. This study does demonstrate
that further randomized controlled trials examining the
efficacy of antiplatelet therapeutics in treating patients
with severe COVID-19 are of clinical value. These future
trials would be strengthened by complementary basic and
translational studies dissecting the role of platelets in
COVID-19 pathophysiology.

Ultimately, a cross-disciplinary approach drawing upon
the expertise of biomedical and clinical communities is
critical in developing a therapeutic arsenal to target not
only the cytokine storm but also the coagulopathy related
to SARS-CoV-2 infection. A deeper understanding of the
contributions of platelets to viral immunity will not only
allow for better treatment of COVID-19, but also help to be
more prepared to manage future viral pandemics.
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