Multiple Myeloma Involving Left Hemicranium

Jutty Parthiban1 Udaykumar B.1 Sudeendra Reddy Peddireddy1 Balasubramaniam Prakash2 Vighnesh Kandha Kumar2

1Department of Neurosurgery, Kovai Medical Centre and Hospital, Coimbatore, Tamil Nadu, India 2Kovai Medical Centre and Hospital, Coimbatore, Tamil Nadu, India

Address for correspondence Jutty Parthiban, MBBS, MCh, Department of Neurosurgery, Kovai Medical Centre And Hospital, 99 Avinashi Road, Coimbatore, Tamil Nadu 641014, India (e-mail: juttyparthiban@gmail.com).

Abstract

Multiple myeloma (MM) is a malignant neoplasm of bone marrow affecting plasma cells. It is commonly seen as multiple punched-out lesions in the skull bone as a characteristic feature. Its presentation as hemicranial involvement with intracranial extension is rare.

Keywords

- Skull bone lesion
- Plasmacytoma
- Multiple myeloma

Multiple myeloma (MM) is a malignant disorder characterized by the proliferation of a single clone of plasma cells derived from B cells in the bone marrow, which produces monoclonal protein (IgG, IgA, and light chain protein κ or λ are the most common).1,2 It accounts for approximately 1% of all malignant diseases and represents about 10% of hematologic malignancies.3 Bone involvement including skull bone causes osteolytic lesions and osteopenia, which leads to extensive skeletal destruction and consequent pathological fractures.4 The common clinical presentation is fatigue and bone pain (back or ribs), with or without associated fractures or infection and weight loss. In 15 to 30% of patients,5 the finding at presentation is hypercalcemia with concomitant renal insufficiency, caused by precipitation of monoclonal light chains in the collecting tubules. Other symptoms like hyperviscosity syndrome, compression of the spinal cord leading to radicular pain, soft-tissue deposits, or bleeding problems can be presented only in 10% of patients. In patients who are asymptomatic, the disease is incidentally discovered because of laboratory findings of anemia or hyperproteinemia.6 The pathogenesis of the bone lytic lesions in MM involves an imbalance between osteoblastic and osteoclastic functions. The osteoclastic activation is increased in MM, with bone reabsorption stimulated by the receptor activator of nuclear factor κ-β ligand (RANKL), which is overexpressed secondary to low levels of osteoprotegerin, the RANKL decoy receptor.7

We present a case of a 46-year-old male patient presented with scalp swelling on left side, starting from parietal region and progressively increasing in size over 6 months. There was no history of recent trauma, fever, headache, or any other neurological impairment. On local examination, scalp swelling was observed involving left hemicranium, which was diffuse, firm to rubbery in consistency and with ill-defined borders.

On evaluation, CT brain showed multiple lytic lesions majorly involving the left side of the skull. MRI brain showed multiple osteolytic lesions over bilateral occipital region, and left temporal and parietal bone, with enhancing lesion in diploic space and minimal extradural soft-tissue extension with enhancement. PET CT showed multiple hypermetabolic regions over the skull (►Fig. 1).

All routine blood investigations were within normal range. Protein serum electrophoresis showed M band 21.5% (raised). Incisional biopsy from high parietal region showed sheets of monotonous cells, with eccentrically placed small round nuclei, clumped chromatin and scanty cytoplasm, which was suggestive of plasmacytoma.

He was started on chemotherapy with bortezomib and thalidomide. He developed grade III neuropathy due to which...
chemotherapeutic regimen changed to carfizomib-lenalidomide and dexamethasone. Follow-up PET CT showed good response to treatment with regression of lesion (Fig. 2).

Plasmacytoma is a solid tumor, which can present as solitary lesion or can be related to past or present MM. Solitary plasmacytomas of head and neck is rare. They can have an intraosseous growth pattern or can arise from within soft tissue such as the extramedullary plasmacytoma. In contrast to solitary plasmacytoma of the bone, extramedullary plasmacytomas rarely progress to MM. As in our case, whole left hemicranium is involved with intracranial extension without brain parenchyma involvement. The diagnosis of plasmacytoma is based on a radiologically solitary bone lesion, plasma cells in the biopsy specimen, less than 5% of plasma cells in bone marrow, less than 2.0 g/dl monoclonal protein (M-protein) in the serum if present, absence of Bence Jones protein in urine, no evidence of hyperglobulinemia and hypercalcemia, and absence of anemia. Analyzing our case (bone lesion, M-protein in the serum, bone marrow plasmacytosis of 21.5%, and related end-organ damage like anemia) supports the diagnosis of symptomatic myeloma. Plasma cell neoplasm is radiosensitive; therefore, local biopsy/debulking followed by radiotherapy had a good result on plasmacytoma. Once disease progresses to MM, prognosis is not as good as plasmacytoma and chemotherapy should be added. The potential for malignant systemic progression is higher for solitary plasmacytomas of bone than for extramedullary-plasmocytomas. Extramedullary localizations of myeloma originating from the cranial bone usually respond well to drugs (e.g., thalidomide, bortezomib, and lenalidomide) compared to central nervous system (CNS) myeloma. Our patient developed grade III neuropathy after bortezomib; hence, the regimen was changed to carfizomib-lenalidomide and dexamethasone. Disease regression was noted on follow-up PET-CT.

MM and plasmacytoma are very common and usually present as punctate or discrete lesion. Large hemicranial involvement is rarely seen. In spite of the size, chemotherapy is main line of treatment.
Fig. 2 Postchemotherapy PET-CT showing good response.

Conflict of Interest
None declared.

References