A 16-year-old boy experienced a sudden loss of consciousness at home in front of his parents. On arrival, he was in cardiac arrest with pulseless electrical activity. An ultrasound study revealed a high-echoic layer surrounding the heart with a high-echoic layer surrounding the ascending aorta as well (►Figs. 1 and 2). He received a diagnosis of clotting cardiac tamponade. Urgent thoracotomy with pericardiotomy was performed (►Fig. 3), but he failed to obtain return of spontaneous circulation. Physicians should focus on not only low-echoic but also high-echoic areas to accurately diagnose clotting, which can result in a critical condition if not managed properly.

Keywords
► aortic dissection
► tamponade
► Loeys–Dietz syndrome

Abstract
A 16-year-old boy experienced a sudden loss of consciousness. On arrival, he was in cardiac arrest. An ultrasound study revealed a high-echoic layer surrounding the heart. He received a diagnosis of clotting cardiac tamponade. Urgent thoracotomy with pericardiotomy was performed, but he failed to obtain return of spontaneous circulation. Autopsy imaging indicated residual pericardiac hematoma (►Fig. 4). Based on his features, he was suspected of having Loeys–Dietz or Marfan syndrome. We postulated that connective tissue disease had induced Type A aortic dissection with subsequent rupture that had resulted in cardiac tamponade and cardiac arrest.

Fig. 1 The ultrasound study revealed a high-echoic layer (arrow) surrounding the heart (arrowheads) suggesting clotting cardiac tamponade.

Fig. 2 The ultrasound study revealed a high-echoic layer (arrow) surrounding the ascending aorta, suggesting aortic dissection.
Permission to perform a genetic analysis was not obtained from his parents.

In cases of hemorrhaging into a closed space, the blood forms a blood clot to achieve hemostasis. During this process, the whole blood separates into a blood clot and serum. When the serum accumulates in one space, it may be detected as fluid by ultrasound. However, it takes some time for the serum to accumulate. Accordingly, a focused assessment with sonography in trauma, which focuses on low-echoic areas to detect serum, is well known to have a high false-negative rate for the acute hemorrhaging state in traumatized patients. Clots are scanned as high-echoic areas on ultrasound studies. If physicians focus not only on low-echoic but also high-echoic areas, the sensitivity for detecting clinically significant blood clots in the human body may be improved.

Unfortunately, the present patient failed to obtain a favorable outcome; however, the urgent resolution of cardiac tamponade by clotting and subsequent treatments might result in a favorable outcome in other patients.

Funding
This work was supported in part by a Grant-in-Aid for Special Research in Subsidies for ordinary expenses of private schools from The Promotion and Mutual Aid Corporation for Private Schools of Japan (http://dx.doi.org/10.13039/501100012359).

Conflict of Interest
The authors declare no conflict of interest related to this article.

Acknowledgment
None.

References