Semin Liver Dis 2021; 41(04): 507-515
DOI: 10.1055/s-0041-1730926
Review Article

Interleukin-17 in Liver Disease Pathogenesis

Na Li
1   Shanghai University of Medicine & Health Sciences, Shanghai, P.R. China
2   Department of Medicine, University of California, San Diego, La Jolla, CA
3   Department of Surgery, University of California, San Diego, La Jolla, CA
,
Gen Yamamoto
2   Department of Medicine, University of California, San Diego, La Jolla, CA
3   Department of Surgery, University of California, San Diego, La Jolla, CA
,
Hiroaki Fuji
2   Department of Medicine, University of California, San Diego, La Jolla, CA
3   Department of Surgery, University of California, San Diego, La Jolla, CA
,
Tatiana Kisseleva
3   Department of Surgery, University of California, San Diego, La Jolla, CA
› Author Affiliations
Funding This study was supported by the National Institutes of Health, grant nos.: R01 DK101737–01A1, U01 AA022614–01A1, R01 DK099205–01A1, and P50AA011999.

Abstract

Interleukin 17A (IL-17A)-producing T helper 17 (Th17) cells were identified as a subset of T helper cells that play a critical role in host defense against bacterial and fungal pathogens. Th17 cells differentiate from Th0 naïve T-cells in response to transforming growth factor β1 (TGF-β1) and IL-6, the cytokines which also drive development of liver fibrosis, require activation of transcription factor retinoic acid receptor-related orphan nuclear receptor gamma t (RORγt). IL-17A signals through the ubiquitously expressed receptor IL-17RA. Expression of IL-17RA is upregulated in patients with hepatitis B virus/hepatitis C virus (HBV/HCV) infections, nonalcoholic steatohepatitis (NASH), alcohol-associated liver disease (AALD), hepatocellular carcinoma (HCC), and experimental models of chronic toxic liver injury. The role of IL-17 signaling in the pathogenesis of NASH- and AALD-induced metabolic liver injury and HCC will be the focus of this review. The role of IL-17A–IL-17RA axis in mediation of the cross-talk between metabolically injured hepatic macrophages, hepatocytes, and fibrogenic myofibroblasts will be discussed.



Publication History

Article published online:
15 June 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med 2018; 24 (07) 908-922
  • 2 Wong T, Dang K, Ladhani S, Singal AK, Wong RJ. Prevalence of alcoholic fatty liver disease among adults in the United States, 2001-2016. JAMA 2019; 321 (17) 1723-1725
  • 3 Tapper EB, Parikh ND. Mortality due to cirrhosis and liver cancer in the United States, 1999-2016: observational study. BMJ 2018; 362: k2817
  • 4 Morgan RL, Baack B, Smith BD, Yartel A, Pitasi M, Falck-Ytter Y. Eradication of hepatitis C virus infection and the development of hepatocellular carcinoma: a meta-analysis of observational studies. Ann Intern Med 2013; 158 (5 pt 1): 329-337
  • 5 O'Shea RS, Dasarathy S, McCullough AJ. Practice Guideline Committee of the American Association for the Study of Liver Diseases, Practice Parameters Committee of the American College of Gastroenterology. Alcoholic liver disease. Hepatology 2010; 51 (01) 307-328
  • 6 Lucey MR, Mathurin P, Morgan TR. Alcoholic hepatitis. N Engl J Med 2009; 360 (26) 2758-2769
  • 7 Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 2011; 141 (05) 1572-1585
  • 8 Sell S. Is there a liver stem cell?. Cancer Res 1990; 50 (13) 3811-3815
  • 9 Alison MR. Liver stem cells: implications for hepatocarcinogenesis. Stem Cell Rev 2005; 1 (03) 253-260
  • 10 Wu XZ, Chen D. Origin of hepatocellular carcinoma: role of stem cells. J Gastroenterol Hepatol 2006; 21 (07) 1093-1098
  • 11 De Minicis S, Kisseleva T, Francis H. et al. Liver carcinogenesis: rodent models of hepatocarcinoma and cholangiocarcinoma. Dig Liver Dis 2013; 45 (06) 450-459
  • 12 Brandl K, Hartmann P, Jih LJ. et al. Dysregulation of serum bile acids and FGF19 in alcoholic hepatitis. J Hepatol 2018; 69 (02) 396-405
  • 13 Loomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol 2013; 10 (11) 686-690
  • 14 Gao B, Ahmad MF, Nagy LE, Tsukamoto H. Inflammatory pathways in alcoholic steatohepatitis. J Hepatol 2019; 70 (02) 249-259
  • 15 Papatheodoridis GV, Lampertico P, Manolakopoulos S, Lok A. Incidence of hepatocellular carcinoma in chronic hepatitis B patients receiving nucleos(t)ide therapy: a systematic review. J Hepatol 2010; 53 (02) 348-356
  • 16 Tornesello ML, Buonaguro L, Izzo F, Buonaguro FM. Molecular alterations in hepatocellular carcinoma associated with hepatitis B and hepatitis C infections. Oncotarget 2016; 7 (18) 25087-25102
  • 17 Goossens N, Hoshida Y. Is hepatocellular cancer the same disease in alcoholic and nonalcoholic fatty liver diseases?. Gastroenterology 2016; 150 (08) 1710-1717
  • 18 Lemmers A, Moreno C, Gustot T. et al. The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology 2009; 49 (02) 646-657
  • 19 Lafdil F, Miller AM, Ki SH, Gao B. Th17 cells and their associated cytokines in liver diseases. Cell Mol Immunol 2010; 7 (04) 250-254
  • 20 Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional specialization of interleukin-17 family members. Immunity 2011; 34 (02) 149-162
  • 21 Kolls JK, Lindén A. Interleukin-17 family members and inflammation. Immunity 2004; 21 (04) 467-476
  • 22 Ivanov II, McKenzie BS, Zhou L. et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 126 (06) 1121-1133
  • 23 Yang XO, Pappu BP, Nurieva R. et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 2008; 28 (01) 29-39
  • 24 Meng F, Wang K, Aoyama T. et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 2012; 143 (03) 765-776.e3
  • 25 Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 2009; 9 (08) 556-567
  • 26 Ye P, Rodriguez FH, Kanaly S. et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 2001; 194 (04) 519-527
  • 27 Shen F, Gaffen SL. Structure-function relationships in the IL-17 receptor: implications for signal transduction and therapy. Cytokine 2008; 41 (02) 92-104
  • 28 Awosika O, Eleryan MG, Rengifo-Pardo M, Doherty L, Martin LW, Ehrlich A. A case-control study to evaluate the prevalence of nonalcoholic fatty liver disease among patients with moderate-to-severe psoriasis. J Clin Aesthet Dermatol 2018; 11 (06) 33-37
  • 29 Xu J, Ma HY, Liu X. et al. Blockade of IL-17 signaling reverses alcohol-induced liver injury and excessive alcohol drinking in mice. JCI Insight 2020; 5 (03) e131277
  • 30 Periasamy S, Chien SP, Chang PC, Hsu DZ, Liu MY. Sesame oil mitigates nutritional steatohepatitis via attenuation of oxidative stress and inflammation: a tale of two-hit hypothesis. J Nutr Biochem 2014; 25 (02) 232-240
  • 31 Waki H, Yamauchi T, Kamon J. et al. Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. J Biol Chem 2003; 278 (41) 40352-40363
  • 32 Di Rosa M, Malaguarnera L. Genetic variants in candidate genes influencing NAFLD progression. J Mol Med (Berl) 2012; 90 (02) 105-118
  • 33 Perla FM, Prelati M, Lavorato M, Visicchio D, Anania C. The role of lipid and lipoprotein metabolism in non-alcoholic fatty liver disease. Children (Basel) 2017; 4 (06) 46
  • 34 Naugler WE, Sakurai T, Kim S. et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 2007; 317 (5834): 121-124
  • 35 Gu FM, Li QL, Gao Q. et al. IL-17 induces AKT-dependent IL-6/JAK2/STAT3 activation and tumor progression in hepatocellular carcinoma. Mol Cancer 2011; 10: 150
  • 36 Li J, Lau GK, Chen L. et al. Interleukin 17A promotes hepatocellular carcinoma metastasis via NF-kB induced matrix metalloproteinases 2 and 9 expression. PLoS One 2011; 6 (07) e21816
  • 37 Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005; 115 (02) 209-218
  • 38 Friedman SL, Roll FJ, Boyles J, Bissell DM. Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proc Natl Acad Sci U S A 1985; 82 (24) 8681-8685
  • 39 Harley IT, Stankiewicz TE, Giles DA. et al. IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice. Hepatology 2014; 59 (05) 1830-1839
  • 40 Kisseleva T. Does interleukin-17 play the villain in nonalcoholic steatohepatitis?. Hepatology 2014; 59 (05) 1671-1672
  • 41 Giles DA, Moreno-Fernandez ME, Stankiewicz TE. et al. Regulation of inflammation by IL-17A and IL-17F modulates non-alcoholic fatty liver disease pathogenesis. PLoS One 2016; 11 (02) e0149783
  • 42 Diehl AM. Alcoholic liver disease: natural history. Liver Transpl Surg 1997; 3 (03) 206-211
  • 43 Mello T, Ceni E, Surrenti C, Galli A. Alcohol induced hepatic fibrosis: role of acetaldehyde. Mol Aspects Med 2008; 29 (1-2): 17-21
  • 44 Miller AM, Horiguchi N, Jeong WI, Radaeva S, Gao B. Molecular mechanisms of alcoholic liver disease: innate immunity and cytokines. Alcohol Clin Exp Res 2011; 35 (05) 787-793
  • 45 Ma HY. et al. IL-17 signaling in steatotic hepatocytes and macrophages promotes hepatocellular carcinoma in alcohol-related liver disease. J Hepatol 2020; 72 (05) 946-959
  • 46 Jones CE, Chan K. Interleukin-17 stimulates the expression of interleukin-8, growth-related oncogene-alpha, and granulocyte-colony-stimulating factor by human airway epithelial cells. Am J Respir Cell Mol Biol 2002; 26 (06) 748-753
  • 47 Dhanda AD, Lee RW, Collins PL, McCune CA. Molecular targets in the treatment of alcoholic hepatitis. World J Gastroenterol 2012; 18 (39) 5504-5513
  • 48 Maltby J, Wright S, Bird G, Sheron N. Chemokine levels in human liver homogenates: associations between GRO alpha and histopathological evidence of alcoholic hepatitis. Hepatology 1996; 24 (05) 1156-1160
  • 49 Dominguez M, Miquel R, Colmenero J. et al. Hepatic expression of CXC chemokines predicts portal hypertension and survival in patients with alcoholic hepatitis. Gastroenterology 2009; 136 (05) 1639-1650
  • 50 Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008; 134 (06) 1655-1669
  • 51 Seki E, De Minicis S, Osterreicher CH. et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 2007; 13 (11) 1324-1332
  • 52 Shen Y, Cao D. Hepatocellular carcinoma stem cells: origins and roles in hepatocarcinogenesis and disease progression. Front Biosci (Elite Ed) 2012; 4: 1157-1169
  • 53 Alexandrov LB. Understanding the origins of human cancer. Science 2015; 350 (6265): 1175
  • 54 Schulze K, Imbeaud S, Letouzé E. et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet 2015; 47 (05) 505-511
  • 55 Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 2006; 6 (09) 674-687
  • 56 Duncan AW, Dorrell C, Grompe M. Stem cells and liver regeneration. Gastroenterology 2009; 137 (02) 466-481
  • 57 Sell S. Heterogeneity and plasticity of hepatocyte lineage cells. Hepatology 2001; 33 (03) 738-750
  • 58 Jiang R, Tan Z, Deng L. et al. Interleukin-22 promotes human hepatocellular carcinoma by activation of STAT3. Hepatology 2011; 54 (03) 900-909
  • 59 Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009; 9 (11) 798-809
  • 60 Wang H, Lafdil F, Kong X, Gao B. Signal transducer and activator of transcription 3 in liver diseases: a novel therapeutic target. Int J Biol Sci 2011; 7 (05) 536-550
  • 61 Sun B, Karin M. Inflammation and liver tumorigenesis. Front Med 2013; 7 (02) 242-254
  • 62 Taniguchi K, Karin M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol 2014; 26 (01) 54-74
  • 63 Yao Z, Fanslow WC, Seldin MF. et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 1995; 3 (06) 811-821
  • 64 Andoh A, Fujino S, Bamba S. et al. IL-17 selectively down-regulates TNF-alpha-induced RANTES gene expression in human colonic subepithelial myofibroblasts. J Immunol 2002; 169 (04) 1683-1687
  • 65 Subramaniam SV, Cooper RS, Adunyah SE. Evidence for the involvement of JAK/STAT pathway in the signaling mechanism of interleukin-17. Biochem Biophys Res Commun 1999; 262 (01) 14-19
  • 66 De Simone V, Franzè E, Ronchetti G. et al. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene 2015; 34 (27) 3493-3503
  • 67 Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov 2012; 11 (10) 763-776
  • 68 McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 family of cytokines in health and disease. Immunity 2019; 50 (04) 892-906
  • 69 von Vietinghoff S, Ley K. IL-17A controls IL-17F production and maintains blood neutrophil counts in mice. J Immunol 2009; 183 (02) 865-873
  • 70 Wei L, Laurence A, Elias KM, O'Shea JJ. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J Biol Chem 2007; 282 (48) 34605-34610
  • 71 Nurieva R, Yang XO, Martinez G. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 2007; 448 (7152): 480-483
  • 72 Leonard WJ, Zeng R, Spolski R. Interleukin 21: a cytokine/cytokine receptor system that has come of age. J Leukoc Biol 2008; 84 (02) 348-356
  • 73 Spolski R, Leonard WJ. Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu Rev Immunol 2008; 26: 57-79
  • 74 Oppmann B, Lesley R, Blom B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2000; 13 (05) 715-725
  • 75 Cua DJ, Sherlock J, Chen Y. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003; 421 (6924): 744-748
  • 76 Parham C, Chirica M, Timans J. et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol 2002; 168 (11) 5699-5708
  • 77 Langrish CL, Chen Y, Blumenschein WM. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005; 201 (02) 233-240
  • 78 Li J, Lau G, Chen L. et al. Interleukin 23 promotes hepatocellular carcinoma metastasis via NF-kappa B induced matrix metalloproteinase 9 expression. PLoS One 2012; 7 (09) e46264
  • 79 Schaalan MF, Mohamed WA, Amin HH. Vitamin D deficiency: correlation to interleukin-17, interleukin-23 and PIIINP in hepatitis C virus genotype 4. World J Gastroenterol 2012; 18 (28) 3738-3744
  • 80 Xu Y. et al. IL-23R polymorphisms, HBV infection, and risk of hepatocellular carcinoma in a high-risk Chinese population. J Gastroenterol 2013; 48 (01) 125-131
  • 81 Zhang JY, Zhang Z, Lin F. et al. Interleukin-17-producing CD4(+) T cells increase with severity of liver damage in patients with chronic hepatitis B. Hepatology 2010; 51 (01) 81-91
  • 82 Gao B. Hepatoprotective and anti-inflammatory cytokines in alcoholic liver disease. J Gastroenterol Hepatol 2012; 27 (Suppl. 02) 89-93
  • 83 Fort MM, Cheung J, Yen D. et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 2001; 15 (06) 985-995
  • 84 Hurst SD, Muchamuel T, Gorman DM. et al. New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J Immunol 2002; 169 (01) 443-453
  • 85 Petersen BC, Lukacs NW. IL-17A and IL-25: therapeutic targets for allergic and exacerbated asthmatic disease. Future Med Chem 2012; 4 (07) 833-836
  • 86 Rickel EA, Siegel LA, Yoon BR. et al. Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities. J Immunol 2008; 181 (06) 4299-4310
  • 87 Lee J, Ho WH, Maruoka M. et al. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J Biol Chem 2001; 276 (02) 1660-1664
  • 88 Liu C, Swaidani S, Qian W. et al. A CC' loop decoy peptide blocks the interaction between Act1 and IL-17RA to attenuate IL-17- and IL-25-induced inflammation. Sci Signal 2011; 4 (197) ra72
  • 89 Liu Y, Munker S, Müllenbach R, Weng HL. IL-13 signaling in liver fibrogenesis. Front Immunol 2012; 3: 116
  • 90 Kleinschek MA, Owyang AM, Joyce-Shaikh B. et al. IL-25 regulates Th17 function in autoimmune inflammation. J Exp Med 2007; 204 (01) 161-170
  • 91 Zheng XL, Wu JP, Gong Y. et al. IL-25 protects against high-fat diet-induced hepatic steatosis in mice by inducing IL-25 and M2a macrophage production. Immunol Cell Biol 2019; 97 (02) 165-177
  • 92 Hall AO, Silver JS, Hunter CA. The immunobiology of IL-27. Adv Immunol 2012; 115: 1-44
  • 93 Diveu C, McGeachy MJ, Boniface K. et al. IL-27 blocks RORc expression to inhibit lineage commitment of Th17 cells. J Immunol 2009; 182 (09) 5748-5756
  • 94 Wirtz S, Tubbe I, Galle PR. et al. Protection from lethal septic peritonitis by neutralizing the biological function of interleukin 27. J Exp Med 2006; 203 (08) 1875-1881
  • 95 Hibbert L, Pflanz S, De Waal Malefyt R, Kastelein RA. IL-27 and IFN-alpha signal via Stat1 and Stat3 and induce T-Bet and IL-12Rbeta2 in naive T cells. J Interferon Cytokine Res 2003; 23 (09) 513-522
  • 96 Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444 (7122): 1022-1023
  • 97 Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444 (7122): 1027-1031
  • 98 Abu-Shanab A, Quigley EM. The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2010; 7 (12) 691-701
  • 99 Giles DA, Moreno-Fernandez ME, Stankiewicz TE. et al. Thermoneutral housing exacerbates nonalcoholic fatty liver disease in mice and allows for sex-independent disease modeling. Nat Med 2017; 23 (07) 829-838
  • 100 Chen P, Stärkel P, Turner JR, Ho SB, Schnabl B. Dysbiosis-induced intestinal inflammation activates tumor necrosis factor receptor I and mediates alcoholic liver disease in mice. Hepatology 2015; 61 (03) 883-894
  • 101 Mendes BG, Schnabl B. From intestinal dysbiosis to alcohol-associated liver disease. Clin Mol Hepatol 2020; 26 (04) 595-605
  • 102 Bäckhed F, Ding H, Wang T. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 2004; 101 (44) 15718-15723
  • 103 Rabot S, Membrez M, Bruneau A. et al. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J 2010; 24 (12) 4948-4959
  • 104 Giles DA, Moreno-Fernandez ME, Divanovic S. IL-17 axis driven inflammation in non-alcoholic fatty liver disease progression. Curr Drug Targets 2015; 16 (12) 1315-1323
  • 105 Henao-Mejia J, Elinav E, Jin C. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012; 482 (7384): 179-185
  • 106 Ivanov II, Frutos RdeL, Manel N. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 2008; 4 (04) 337-349
  • 107 Ivanov II, Atarashi K, Manel N. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009; 139 (03) 485-498
  • 108 Gaboriau-Routhiau V, Rakotobe S, Lécuyer E. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009; 31 (04) 677-689
  • 109 Mridha AR, Wree A, Robertson AAB. et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol 2017; 66 (05) 1037-1046
  • 110 Arsov T, Silva DG, O'Bryan MK. et al. Fat aussie--a new Alström syndrome mouse showing a critical role for ALMS1 in obesity, diabetes, and spermatogenesis. Mol Endocrinol 2006; 20 (07) 1610-1622
  • 111 Van Rooyen DM, Larter CZ, Haigh WG. et al. Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis. Gastroenterology 2011; 141 (04) 1393-1403 , 1403.e1–1403.e5
  • 112 Farrell GC, Mridha AR, Yeh MM. et al. Strain dependence of diet-induced NASH and liver fibrosis in obese mice is linked to diabetes and inflammatory phenotype. Liver Int 2014; 34 (07) 1084-1093
  • 113 Haridass D, Yuan Q, Becker PD. et al. Repopulation efficiencies of adult hepatocytes, fetal liver progenitor cells, and embryonic stem cell-derived hepatic cells in albumin-promoter-enhancer urokinase-type plasminogen activator mice. Am J Pathol 2009; 175 (04) 1483-1492
  • 114 Kim JY, Garcia-Carbonell R, Yamachika S. et al. ER stress drives lipogenesis and steatohepatitis via Caspase-2 activation of S1P. Cell 2018; 175 (01) 133-145.e15
  • 115 Shalapour S, Lin XJ, Bastian IN. et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 2017; 551 (7680): 340-345
  • 116 Ueno A, Lazaro R, Wang PY, Higashiyama R, Machida K, Tsukamoto H. Mouse intragastric infusion (iG) model. Nat Protoc 2012; 7 (04) 771-781
  • 117 Gomes AL, Teijeiro A, Burén S. et al. Metabolic inflammation-associated IL-17A causes non-alcoholic steatohepatitis and hepatocellular carcinoma. Cancer Cell 2016; 30 (01) 161-175
  • 118 Tan Z, Qian X, Jiang R. et al. IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J Immunol 2013; 191 (04) 1835-1844
  • 119 Villa GR, Hulce JJ, Zanca C. et al. An LXR-cholesterol axis creates a metabolic co-dependency for brain cancers. Cancer Cell 2016; 30 (05) 683-693
  • 120 Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol 2008; 9 (02) 125-138
  • 121 Osborne TF, Espenshade PJ. Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange tRIP it's been. Genes Dev 2009; 23 (22) 2578-2591
  • 122 Fitzky BU, Moebius FF, Asaoka H. et al. 7-Dehydrocholesterol-dependent proteolysis of HMG-CoA reductase suppresses sterol biosynthesis in a mouse model of Smith-Lemli-Opitz/RSH syndrome. J Clin Invest 2001; 108 (06) 905-915
  • 123 Yu H, Li M, Tint GS, Chen J, Xu G, Patel SB. Selective reconstitution of liver cholesterol biosynthesis promotes lung maturation but does not prevent neonatal lethality in Dhcr7 null mice. BMC Dev Biol 2007; 7: 27
  • 124 Yu H, Wessels A, Tint GS, Patel SB. Partial rescue of neonatal lethality of Dhcr7 null mice by a nestin promoter-driven DHCR7 transgene expression. Brain Res Dev Brain Res 2005; 156 (01) 46-60
  • 125 Boland MR, Tatonetti NP. Investigation of 7-dehydrocholesterol reductase pathway to elucidate off-target prenatal effects of pharmaceuticals: a systematic review. Pharmacogenomics J 2016; 16 (05) 411-429
  • 126 Cui X, Hawari F, Alsaaty S. et al. Identification of ARTS-1 as a novel TNFR1-binding protein that promotes TNFR1 ectodomain shedding. J Clin Invest 2002; 110 (04) 515-526
  • 127 Islam A, Adamik B, Hawari FI. et al. Extracellular TNFR1 release requires the calcium-dependent formation of a nucleobindin 2-ARTS-1 complex. J Biol Chem 2006; 281 (10) 6860-6873
  • 128 García-Galiano D, Tena-Sempere M. Emerging roles of NUCB2/nesfatin-1 in the metabolic control of reproduction. Curr Pharm Des 2013; 19 (39) 6966-6972
  • 129 Hammerich L, Heymann F, Tacke F. Role of IL-17 and Th17 cells in liver diseases. Clin Dev Immunol 2011; 2011: 345803
  • 130 Tang Y, Bian Z, Zhao L. et al. Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease. Clin Exp Immunol 2011; 166 (02) 281-290
  • 131 Hueber W, Sands BE, Lewitzky S. et al; Secukinumab in Crohn's Disease Study Group. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 2012; 61 (12) 1693-1700
  • 132 Solt LA, Kumar N, Nuhant P. et al. Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature 2011; 472 (7344): 491-494
  • 133 Reich K, Langley RG, Papp KA. et al. A 52-week trial comparing briakinumab with methotrexate in patients with psoriasis. N Engl J Med 2011; 365 (17) 1586-1596
  • 134 Ma HY, Xu J, Liu X. et al. The role of IL-17 signaling in regulation of the liver-brain axis and intestinal permeability in alcoholic liver disease. Curr Pathobiol Rep 2016; 4 (01) 27-35