Semin Respir Crit Care Med 2021; 42(04): 595-605
DOI: 10.1055/s-0041-1730944
Review Article

Bronchiectasis Exacerbations: Definitions, Causes, and Acute Management

Sivan Perl
1   Pulmonology Institute, Shamir Medical Center, Tel Aviv, Israel
,
Michal Shteinberg
2   Pulmonology Institute and CF Center, Carmel Medical Center, Technion—Israel Institute of Technology, Haifa, Israel
› Author Affiliations

Abstract

Pulmonary exacerbations (PExs) are events in the course of bronchiectasis which are defined as an increase in disease symptoms lasting a period of a few days. It is established that the tendency toward having PEx is stable throughout the course of the disease. Certain conditions were found to be associated with an increased risk of developing a PEx. Among these are chronic airway infection with Pseudomonas aeruginosa or Aspergillus species, concomitant airway diseases (asthma, chronic obstructive pulmonary disease, and chronic rhinosinusitis), genetic factors such as primary ciliary dyskinesia, and nutritional factors. The immediate events underlying the onset of a PEx are less clearly determined. Although acute changes in bacterial airway composition have been the paradigm for decades, recent microbiome-focused research has not uniformly established such acute changes at the onset of PEx. Other acute changes such as air pollution, viral infection, and changes in bacterial metabolic activity have also been implicated as causes of a PEx. Despite these gaps in our knowledge of the biology of PEx, antimicrobial therapy directed against the identified pathogens in sputum is currently the recommended therapeutic strategy. Various long-term therapies, including antimicrobial and anti-inflammatory strategies, have been proven effective in reducing the frequency of PEx, leading to a recommendation for the use of these strategies in people with frequent PEx.



Publication History

Article published online:
14 July 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Martínez-García MÁ, de Gracia J, Vendrell Relat M. et al. Multidimensional approach to non-cystic fibrosis bronchiectasis: the FACED score. Eur Respir J 2014; 43 (05) 1357-1367
  • 2 Chalmers JD, Goeminne P, Aliberti S. et al. The bronchiectasis severity index: an international derivation and validation study. Am J Respir Crit Care Med 2014; 189 (05) 576-585
  • 3 Ip M, Shum D, Lauder I, Lam WK, So SY. Effect of antibiotics on sputum inflammatory contents in acute exacerbations of bronchiectasis. Respir Med 1993; 87 (06) 449-454
  • 4 Guan W-J, Gao Y-H, Xu G. et al. Inflammatory responses, spirometry, and quality of life in subjects with bronchiectasis exacerbations. Respir Care 2015; 60 (08) 1180-1189
  • 5 Courtney JM, Kelly MG, Watt A. et al. Quality of life and inflammation in exacerbations of bronchiectasis. Chron Respir Dis 2008; 5 (03) 161-168
  • 6 Polverino E, Rosales-Mayor E, Benegas M. et al. Pneumonic and non-pneumonic exacerbations in bronchiectasis: clinical and microbiological differences. J Infect 2018; 77 (02) 99-106
  • 7 Hill AT, Haworth CS, Aliberti S. et al; EMBARC/BRR Definitions Working Group. Pulmonary exacerbation in adults with bronchiectasis: a consensus definition for clinical research. Eur Respir J 2017; 49 (06) 1700051
  • 8 Martínez-García MÁ, Máiz L, Olveira C. et al. Spanish guidelines on treatment of bronchiectasis in adults. Arch Bronconeumol 2018; 54 (02) 88-98
  • 9 Hill AT, Sullivan AL, Chalmers JD. et al. British Thoracic Society Guideline for bronchiectasis in adults. Thorax 2019; 74 (Suppl. 01) 1-69
  • 10 Araújo D, Shteinberg M, Aliberti S. et al. The independent contribution of Pseudomonas aeruginosa infection to long-term clinical outcomes in bronchiectasis. Eur Respir J 2018; 51 (02) 1701953
  • 11 Chalmers JD, Smith MP, McHugh BJ, Doherty C, Govan JR, Hill AT. Short- and long-term antibiotic treatment reduces airway and systemic inflammation in non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med 2012; 186 (07) 657-665
  • 12 Murray MP, Turnbull K, Macquarrie S, Hill AT. Assessing response to treatment of exacerbations of bronchiectasis in adults. Eur Respir J 2009; 33 (02) 312-318
  • 13 Tunney MM, Einarsson GG, Wei L. et al. Lung microbiota and bacterial abundance in patients with bronchiectasis when clinically stable and during exacerbation. Am J Respir Crit Care Med 2013; 187 (10) 1118-1126
  • 14 Cox MJ, Turek EM, Hennessy C. et al. Longitudinal assessment of sputum microbiome by sequencing of the 16S rRNA gene in non-cystic fibrosis bronchiectasis patients. PLoS One 2017; 12 (02) e0170622
  • 15 Byun MK, Chang J, Kim HJ, Jeong SH. Differences of lung microbiome in patients with clinically stable and exacerbated bronchiectasis. PLoS One 2017; 12 (08) e0183553
  • 16 Raghuvanshi R, Vasco K, Vázquez-Baeza Y. et al. High-resolution longitudinal dynamics of the cystic fibrosis sputum microbiome and metabolome through antibiotic therapy. mSystems 2020; 5 (03) e00292-20
  • 17 Venkataraman A, Rosenbaum MA, Werner JJ, Winans SC, Angenent LT. Metabolite transfer with the fermentation product 2,3-butanediol enhances virulence by Pseudomonas aeruginosa . ISME J 2014; 8 (06) 1210-1220
  • 18 Nguyen M, Sharma A, Wu W. et al. The fermentation product 2,3-butanediol alters P. aeruginosa clearance, cytokine response and the lung microbiome. ISME J 2016; 10 (12) 2978-2983
  • 19 Mirković B, Murray MA, Lavelle GM. et al. Short-chain fatty acids cause an IL-8 response in cystic fibrosis airways via increased GPR41. Am J Respir Crit Care Med 2015; 192 (11) 1314-1324
  • 20 Quinn RA, Whiteson K, Lim Y-W. et al. A Winogradsky-based culture system shows an association between microbial fermentation and cystic fibrosis exacerbation. ISME J 2015; 9 (04) 1024-1038
  • 21 Gao Y-H, Guan W-J, Xu G. et al. The role of viral infection in pulmonary exacerbations of bronchiectasis in adults: a prospective study. Chest 2015; 147 (06) 1635-1643
  • 22 Richardson H, Dicker AJ, Barclay H, Chalmers JD. The microbiome in bronchiectasis. Eur Respir Rev 2019; 28 (153) 190048
  • 23 Chen C-L, Huang Y, Yuan J-J. et al. The roles of bacteria and viruses in bronchiectasis exacerbation: a prospective study. Arch Bronconeumol 2020; 56 (10) 621-629
  • 24 Mitchell AB, Mourad B, Buddle L, Peters MJ, Oliver BGG, Morgan LC. Viruses in bronchiectasis: a pilot study to explore the presence of community acquired respiratory viruses in stable patients and during acute exacerbations. BMC Pulm Med 2018; 18 (01) 84
  • 25 Polverino E, Rosales-Mayor E, Torres A. Exacerbation of bronchiectasis. In: Chalmers J, Polverino E, Aliberti S. eds. Bronchiectasis: The EMBARC Manual. Cham: Springer International Publishing; 2018: 205-222
  • 26 Goeminne P, Bedi P, Kicinski M. et al. The impact of acute air pollution fluctuations on non-cystic fibrosis bronchiectasis pulmonary exacerbations: a case-crossover analysis. Eur Respir J 2015; PA364
  • 27 Goeminne PC, Cox B, Finch S. et al. The impact of acute air pollution fluctuations on bronchiectasis pulmonary exacerbation: a case-crossover analysis. Eur Respir J 2018; 52 (01) 1702557
  • 28 Garcia-Olivé I, Radua J, Sánchez-Berenguer D. et al. Association between environmental factors and hospitalisations for bronchiectasis in Badalona, Barcelona, Spain (2007-2015). Med Clin (Barc) 2018; 150 (07) 257-261
  • 29 Raji H, Riahi A, Borsi SH. et al. Acute effects of air pollution on hospital admissions for asthma, COPD, and bronchiectasis in Ahvaz, Iran. Int J Chron Obstruct Pulmon Dis 2020; 15: 501-514
  • 30 Goeminne PC, Bijnens E, Nemery B, Nawrot TS, Dupont LJ. Impact of traffic related air pollution indicators on non-cystic fibrosis bronchiectasis mortality: a cohort analysis. Respir Res 2014; 15: 108
  • 31 Ratjen F, Waters V, Klingel M. et al. Changes in airway inflammation during pulmonary exacerbations in patients with cystic fibrosis and primary ciliary dyskinesia. Eur Respir J 2016; 47 (03) 829-836
  • 32 Chalmers JD, Moffitt KL, Suarez-Cuartin G. et al. Neutrophil elastase activity is associated with exacerbations and lung function decline in bronchiectasis. Am J Respir Crit Care Med 2017; 195 (10) 1384-1393
  • 33 Menéndez R, Méndez R, Amara-Elori I. et al. Systemic inflammation during and after bronchiectasis exacerbations: impact of Pseudomonas aeruginosa . J Clin Med 2020; 9 (08) E2631
  • 34 Yipp BG, Petri B, Salina D. et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med 2012; 18 (09) 1386-1393
  • 35 Keir HR, Shoemark A, Dicker AJ. et al. Neutrophil extracellular traps, disease severity, and antibiotic response in bronchiectasis: an international, observational, multicohort study. Lancet Respir Med 2021;(20)30504:S2213-2600 [ePub Feb 16, 2021]
  • 36 Chalmers JD, Aliberti S, Filonenko A. et al. Characterization of the “frequent exacerbator phenotype” in bronchiectasis. Am J Respir Crit Care Med 2018; 197 (11) 1410-1420
  • 37 Mac Aogáin M, Chandrasekaran R, Lim AYH. et al. Immunological corollary of the pulmonary mycobiome in bronchiectasis: the CAMEB study. Eur Respir J 2018; 52 (01) 1800766
  • 38 Dente FL, Bilotta M, Bartoli ML. et al. Neutrophilic bronchial inflammation correlates with clinical and functional findings in patients with noncystic fibrosis bronchiectasis. Mediators Inflamm 2015; 2015: 642503
  • 39 Sibila O, Perea L, Cantó E. et al. Antimicrobial peptides, disease severity and exacerbations in bronchiectasis. Thorax 2019; 74 (09) 835-842
  • 40 Mao B, Yang J-W, Lu H-W, Xu J-F. Asthma and bronchiectasis exacerbation. Eur Respir J 2016; 47 (06) 1680-1686
  • 41 McDonnell MJ, Aliberti S, Goeminne PC. et al. Comorbidities and the risk of mortality in patients with bronchiectasis: an international multicentre cohort study. Lancet Respir Med 2016; 4 (12) 969-979
  • 42 Shteinberg M, Nassrallah N, Jrbashyan J, Uri N, Stein N, Adir Y. Upper airway involvement in bronchiectasis is marked by early onset and allergic features. ERJ Open Res 2018; 4 (01) 00115-2017
  • 43 Mandal P, Morice AH, Chalmers JD, Hill AT. Symptoms of airway reflux predict exacerbations and quality of life in bronchiectasis. Respir Med 2013; 107 (07) 1008-1013
  • 44 Ferri S, Crimi C, Heffler E, Campisi R, Noto A, Crimi N. Vitamin D and disease severity in bronchiectasis. Respir Med 2019; 148: 1-5
  • 45 Martineau AR, Jolliffe DA, Hooper RL. et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ 2017; 356: i6583
  • 46 Chalmers JD, McHugh BJ, Docherty C, Govan JRW, Hill AT. Vitamin-D deficiency is associated with chronic bacterial colonisation and disease severity in bronchiectasis. Thorax 2013; 68 (01) 39-47
  • 47 Garred P, Pressler T, Madsen HO. et al. Association of mannose-binding lectin gene heterogeneity with severity of lung disease and survival in cystic fibrosis. J Clin Invest 1999; 104 (04) 431-437
  • 48 Chalmers JD, McHugh BJ, Doherty C. et al. Mannose-binding lectin deficiency and disease severity in non-cystic fibrosis bronchiectasis: a prospective study. Lancet Respir Med 2013; 1 (03) 224-232
  • 49 Makin K, Easter T, Kemp M. et al. Undetectable mannose binding lectin is associated with HRCT proven bronchiectasis in rheumatoid arthritis (RA). PLoS One 2019; 14 (04) e0215051
  • 50 Dogru D, Polat SE, Tan Ç. et al. Impact of mannose-binding lectin 2 gene polymorphisms on disease severity in noncystic fibrosis bronchiectasis in children. Pediatr Pulmonol 2020; 55 (05) 1190-1198
  • 51 Eden E, Choate R, Barker A. et al. The clinical features of bronchiectasis associated with alpha-1 antitrypsin deficiency, common variable immunodeficiency and primary ciliary dyskinesia--results from the U.S. Bronchiectasis Research Registry. Chronic Obstr Pulm Dis (Miami) 2019; 6 (02) 145-153
  • 52 Taylor SL, Woodman RJ, Chen AC. et al. FUT2 genotype influences lung function, exacerbation frequency and airway microbiota in non-CF bronchiectasis. Thorax 2017; 72 (04) 304-310
  • 53 Navaratnam V, Root AA, Douglas I, Smeeth L, Hubbard RB, Quint JK. Cardiovascular outcomes after a respiratory tract infection among adults with non-cystic fibrosis bronchiectasis: a general population-based study. Annals Am Thoracic Soc 2018; 15 (03) 315-321
  • 54 Polverino E, Goeminne PC, McDonnell MJ. et al. European Respiratory Society guidelines for the management of adult bronchiectasis. Eur Respir J 2017; 50 (03) 1700629
  • 55 Amati F, Simonetta E, Gramegna A. et al. The biology of pulmonary exacerbations in bronchiectasis. Eur Respir Rev 2019; 28 (154) 190055
  • 56 Spencer S, Felix LM, Milan SJ. et al. Oral versus inhaled antibiotics for bronchiectasis. Cochrane Database Syst Rev 2018; 3: CD012579
  • 57 Phillips J, Lee A, Pope R, Hing W. Effect of airway clearance techniques in patients experiencing an acute exacerbation of bronchiectasis: a systematic review. Physiother Theory Pract 2020; 36 (12) 1300-1315
  • 58 Pizzutto SJ, Upham JW, Yerkovich ST, Chang AB. Inhaled non-steroid anti-inflammatories for children and adults with bronchiectasis. Cochrane Database Syst Rev 2016; (01) CD007525
  • 59 Kasetty G, Bhongir RKV, Papareddy P, Herwald H, Egesten A. The nonantibiotic macrolide EM703 improves survival in a model of quinolone-treated Pseudomonas aeruginosa airway infection. Antimicrob Agents Chemother 2017; 61 (09) e02761-16
  • 60 Pezzulo AA, Stoltz DA, Hornick DB, Durairaj L. Inhaled hypertonic saline in adults hospitalised for exacerbation of cystic fibrosis lung disease: a retrospective study. BMJ Open 2012; 2 (02) e000407
  • 61 Kellett F, Robert NM. Nebulised 7% hypertonic saline improves lung function and quality of life in bronchiectasis. Respir Med 2011; 105 (12) 1831-1835
  • 62 Nicolson CHH, Stirling RG, Borg BM, Button BM, Wilson JW, Holland AE. The long term effect of inhaled hypertonic saline 6% in non-cystic fibrosis bronchiectasis. Respir Med 2012; 106 (05) 661-667
  • 63 Qi Q, Ailiyaer Y, Liu R. et al. Effect of N-acetylcysteine on exacerbations of bronchiectasis (BENE): a randomized controlled trial. Respir Res 2019; 20 (01) 73
  • 64 Bilton D, Tino G, Barker AF. et al; B-305 Study Investigators. Inhaled mannitol for non-cystic fibrosis bronchiectasis: a randomised, controlled trial. Thorax 2014; 69 (12) 1073-1079
  • 65 O'Donnell AE, Barker AF, Ilowite JS, Fick RB. Treatment of idiopathic bronchiectasis with aerosolized recombinant human DNase I. rhDNase Study Group. Chest 1998; 113 (05) 1329-1334
  • 66 Hernando R, Drobnic ME, Cruz MJ. et al. Budesonide efficacy and safety in patients with bronchiectasis not due to cystic fibrosis. Int J Clin Pharm 2012; 34 (04) 644-650
  • 67 Martínez-García MA, Perpiñá-Tordera M, Román-Sánchez P, Soler-Cataluña JJ. Inhaled steroids improve quality of life in patients with steady-state bronchiectasis. Respir Med 2006; 100 (09) 1623-1632
  • 68 Kapur N, Petsky HL, Bell S, Kolbe J, Chang AB. Inhaled corticosteroids for bronchiectasis. Cochrane Database Syst Rev 2018; 5: CD000996
  • 69 Martinez-Garcia MA, Posadas T, Sotgiu G, Blasi F, Saderi L, Aliberti S. Role of inhaled corticosteroids in reducing exacerbations in bronchiectasis patients with blood eosinophilia pooled post-hoc analysis of 2 randomized clinical trials. Respir Med 2020; 172: 106127
  • 70 Bedi P, Chalmers J, Rossi A, Hill A. Atorvastatin as an anti inflammatory in bronchiectasis. Eur Respin J 2015; PA360
  • 71 Su VY-F, Perng D-W, Chou T-C. et al. Mucolytic agents and statins use is associated with a lower risk of acute exacerbations in patients with bronchiectasis-chronic obstructive pulmonary disease overlap. J Clin Med 2018; 7 (12) E517
  • 72 Haworth CS, Foweraker JE, Wilkinson P, Kenyon RF, Bilton D. Inhaled colistin in patients with bronchiectasis and chronic Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 2014; 189 (08) 975-982
  • 73 De Soyza A, Aksamit T, Bandel T-J. et al. RESPIRE 1: a phase III placebo-controlled randomised trial of ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis. Eur Respir J 2018; 51 (01) 1702052
  • 74 Haworth CS, Bilton D, Chalmers JD. et al. Inhaled liposomal ciprofloxacin in patients with non-cystic fibrosis bronchiectasis and chronic lung infection with Pseudomonas aeruginosa (ORBIT-3 and ORBIT-4): two phase 3, randomised controlled trials. Lancet Respir Med 2019; 7 (03) 213-226
  • 75 Murray MP, Govan JRW, Doherty CJ. et al. A randomized controlled trial of nebulized gentamicin in non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med 2011; 183 (04) 491-499
  • 76 Vendrell M, Muñoz G, de Gracia J. Evidence of inhaled tobramycin in non-cystic fibrosis bronchiectasis. Open Respir Med J 2015; 9: 30-36
  • 77 Serisier DJ, Martin ML, McGuckin MA. et al. Effect of long-term, low-dose erythromycin on pulmonary exacerbations among patients with non-cystic fibrosis bronchiectasis: the BLESS randomized controlled trial. JAMA 2013; 309 (12) 1260-1267
  • 78 Altenburg J, de Graaff CS, Stienstra Y. et al. Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: the BAT randomized controlled trial. JAMA 2013; 309 (12) 1251-1259
  • 79 Wong C, Jayaram L, Karalus N. et al. Azithromycin for prevention of exacerbations in non-cystic fibrosis bronchiectasis (EMBRACE): a randomised, double-blind, placebo-controlled trial. Lancet 2012; 380 (9842): 660-667
  • 80 Li W, Qin Z, Gao J. et al. Azithromycin or erythromycin? Macrolides for non-cystic fibrosis bronchiectasis in adults: a systematic review and adjusted indirect treatment comparison. Chron Respir Dis 2019; 16: 1479972318790269
  • 81 Chalmers JD, Boersma W, Lonergan M. et al. Long-term macrolide antibiotics for the treatment of bronchiectasis in adults: an individual participant data meta-analysis. Lancet Respir Med 2019; 7 (10) 845-854
  • 82 Chalmers JD, Haworth CS, Metersky ML. et al; WILLOW Investigators. Phase 2 trial of the DPP-1 inhibitor brensocatib in bronchiectasis. N Engl J Med 2020; 383 (22) 2127-2137